Switch to: References

Add citations

You must login to add citations.
  1. Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness theorem, such a formal system cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Hilbert's Programs: 1917–1922.Wilfried Sieg - 1999 - Bulletin of Symbolic Logic 5 (1):1-44.
    Hilbert's finitist program was not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Relative truth definability of axiomatic truth theories.Kentaro Fujimoto - 2010 - Bulletin of Symbolic Logic 16 (3):305-344.
    The present paper suggests relative truth definability as a tool for comparing conceptual aspects of axiomatic theories of truth and gives an overview of recent developments of axiomatic theories of truth in the light of it. We also show several new proof-theoretic results via relative truth definability including a complete answer to the conjecture raised by Feferman in [13].
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • A System of Complete and Consistent Truth.Volker Halbach - 1994 - Notre Dame Journal of Formal Logic 35 (1):311--27.
    To the axioms of Peano arithmetic formulated in a language with an additional unary predicate symbol T we add the rules of necessitation and conecessitation T and axioms stating that T commutes with the logical connectives and quantifiers. By a result of McGee this theory is -inconsistent, but it can be approximated by models obtained by a kind of rule-of-revision semantics. Furthermore we prove that FS is equivalent to a system already studied by Friedman and Sheard and give an analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Systems of explicit mathematics with non-constructive μ-operator. Part II.Solomon Feferman & Gerhard Jäger - 1996 - Annals of Pure and Applied Logic 79 (1):37-52.
    This paper is mainly concerned with proof-theoretic analysis of some second-order systems of explicit mathematics with a non-constructive minimum operator. By introducing axioms for variable types we extend our first-order theory BON to the elementary explicit type theory EET and add several forms of induction as well as axioms for μ. The principal results then state: EET plus set induction is proof-theoretically equivalent to Peano arithmetic PA <0).
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Systems of explicit mathematics with non-constructive μ-operator. Part I.Solomon Feferman & Gerhard Jäger - 1993 - Annals of Pure and Applied Logic 65 (3):243-263.
    Feferman, S. and G. Jäger, Systems of explicit mathematics with non-constructive μ-operator. Part I, Annals of Pure and Applied Logic 65 243-263. This paper is mainly concerned with the proof-theoretic analysis of systems of explicit mathematics with a non-constructive minimum operator. We start off from a basic theory BON of operators and numbers and add some principles of set and formula induction on the natural numbers as well as axioms for μ. The principal results then state: BON plus set induction (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Does reductive proof theory have a viable rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical Determinate Truth I.Kentaro Fujimoto & Volker Halbach - 2024 - Journal of Symbolic Logic 89 (1):218-261.
    We introduce and analyze a new axiomatic theory$\mathsf {CD}$of truth. The primitive truth predicate can be applied to sentences containing the truth predicate. The theory is thoroughly classical in the sense that$\mathsf {CD}$is not only formulated in classical logic, but that the axiomatized notion of truth itself is classical: The truth predicate commutes with all quantifiers and connectives, and thus the theory proves that there are no truth value gaps or gluts. To avoid inconsistency, the instances of the T-schema are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What rests on what? The proof-theoretic analysis of mathematics.Solomon Feferman - 1993 - In J. Czermak (ed.), Philosophy of Mathematics. Hölder-Pichler-Tempsky. pp. 1--147.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Neo-logicism? An ontological reduction of mathematics to metaphysics.Edward N. Zalta - 2000 - Erkenntnis 53 (1-2):219-265.
    In this paper, we describe "metaphysical reductions", in which the well-defined terms and predicates of arbitrary mathematical theories are uniquely interpreted within an axiomatic, metaphysical theory of abstract objects. Once certain (constitutive) facts about a mathematical theory T have been added to the metaphysical theory of objects, theorems of the metaphysical theory yield both an analysis of the reference of the terms and predicates of T and an analysis of the truth of the sentences of T. The well-defined terms and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Truth and reduction.Volker Halbach - 2000 - Erkenntnis 53 (1-2):97-126.
    The proof-theoretic results on axiomatic theories oftruth obtained by different authors in recent years are surveyed.In particular, the theories of truth are related to subsystems ofsecond-order analysis. On the basis of these results, thesuitability of axiomatic theories of truth for ontologicalreduction is evaluated.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Recent advances in ordinal analysis: Π 21-CA and related systems.Michael Rathjen - 1995 - Bulletin of Symbolic Logic 1 (4):468 - 485.
    §1. Introduction. The purpose of this paper is, in general, to report the state of the art of ordinal analysis and, in particular, the recent success in obtaining an ordinal analysis for the system of -analysis, which is the subsystem of formal second order arithmetic, Z2, with comprehension confined to -formulae. The same techniques can be used to provide ordinal analyses for theories that are reducible to iterated -comprehension, e.g., -comprehension. The details will be laid out in [28].Ordinal-theoretic proof theory (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Truth, reflection, and hierarchies.Michael Glanzberg - 2005 - Synthese 142 (3):289 - 315.
    A common objection to hierarchical approaches to truth is that they fragment the concept of truth. This paper defends hierarchical approaches in general against the objection of fragmentation. It argues that the fragmentation required is familiar and unprob-lematic, via a comparison with mathematical proof. Furthermore, it offers an explanation of the source and nature of the fragmentation of truth. Fragmentation arises because the concept exhibits a kind of failure of closure under reflection. This paper offers a more precise characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Totality in applicative theories.Gerhard Jäger & Thomas Strahm - 1995 - Annals of Pure and Applied Logic 74 (2):105-120.
    In this paper we study applicative theories of operations and numbers with the non-constructive minimum operator in the context of a total application operation. We determine the proof-theoretic strength of such theories by relating them to well-known systems like Peano Arithmetic PA and the system <0 of second order arithmetic. Essential use will be made of so-called fixed-point theories with ordinals, certain infinitary term models and Church-Rosser properties.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Finitary inductively presented logics.Solomon Feferman - manuscript
    A notion of finitary inductively presented (f.i.p.) logic is proposed here, which includes all syntactically described logics (formal systems)met in practice. A f.i.p. theory FS0 is set up which is universal for all f.i.p. logics; though formulated as a theory of functions and classes of expressions, FS0 is a conservative extension of PRA. The aims of this work are (i)conceptual, (ii)pedagogical and (iii)practical. The system FS0 serves under (i)and (ii)as a theoretical framework for the formalization of metamathematics. The general approach (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Systems of explicit mathematics with non-constructive μ-operator and join.Thomas Glaß & Thomas Strahm - 1996 - Annals of Pure and Applied Logic 82 (2):193-219.
    The aim of this article is to give the proof-theoretic analysis of various subsystems of Feferman's theory T1 for explicit mathematics which contain the non-constructive μ-operator and join. We make use of standard proof-theoretic techniques such as cut-elimination of appropriate semiformal systems and asymmetrical interpretations in standard structures for explicit mathematics.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Truth in applicative theories.Reinhard Kahle - 2001 - Studia Logica 68 (1):103-128.
    We give a survey on truth theories for applicative theories. It comprises Frege structures, universes for Frege structures, and a theory of supervaluation. We present the proof-theoretic results for these theories and show their syntactical expressive power. In particular, we present as a novelty a syntactical interpretation of ID1 in a applicative truth theory based on supervaluation.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Proof-theoretic reduction as a philosopher's tool.Thomas Hofweber - 2000 - Erkenntnis 53 (1-2):127-146.
    Hilbert’s program in the philosophy of mathematics comes in two parts. One part is a technical part. To carry out this part of the program one has to prove a certain technical result. The other part of the program is a philosophical part. It is concerned with philosophical questions that are the real aim of the program. To carry out this part one, basically, has to show why the technical part answers the philosophical questions one wanted to have answered. Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On uniform weak König's lemma.Ulrich Kohlenbach - 2002 - Annals of Pure and Applied Logic 114 (1-3):103-116.
    The so-called weak König's lemma WKL asserts the existence of an infinite path b in any infinite binary tree . Based on this principle one can formulate subsystems of higher-order arithmetic which allow to carry out very substantial parts of classical mathematics but are Π 2 0 -conservative over primitive recursive arithmetic PRA . In Kohlenbach 1239–1273) we established such conservation results relative to finite type extensions PRA ω of PRA . In this setting one can consider also a uniform (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Understanding uniformity in Feferman's explicit mathematics.Thomas Glaß - 1995 - Annals of Pure and Applied Logic 75 (1-2):89-106.
    The aim of this paper is the analysis of uniformity in Feferman's explicit mathematics. The proof-strength of those systems for constructive mathematics is determined by reductions to subsystems of second-order arithmetic: If uniformity is absent, the method of standard structures yields that the strength of the join axiom collapses. Systems with uniformity and join are treated via cut elimination and asymmetrical interpretations in standard structures.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The metamathematics of ergodic theory.Jeremy Avigad - 2009 - Annals of Pure and Applied Logic 157 (2-3):64-76.
    The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Subsystems of true arithmetic and hierarchies of functions.Z. Ratajczyk - 1993 - Annals of Pure and Applied Logic 64 (2):95-152.
    Ratajczyk, Z., Subsystems of true arithmetic and hierarchies of functions, Annals of Pure and Applied Logic 64 95–152. The combinatorial method coming from the study of combinatorial sentences independent of PA is developed. Basing on this method we present the detailed analysis of provably recursive functions associated with higher levels of transfinite induction, I, and analyze combinatorial sentences independent of I. Our treatment of combinatorial sentences differs from the one given by McAloon [18] and gives more natural sentences. The same (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Universes over Frege structures.Reinhard Kahle - 2003 - Annals of Pure and Applied Logic 119 (1-3):191-223.
    In this paper, we study a concept of universe for a truth predicate over applicative theories. A proof-theoretic analysis is given by use of transfinitely iterated fixed point theories . The lower bound is obtained by a syntactical interpretation of these theories. Thus, universes over Frege structures represent a syntactically expressive framework of metapredicative theories in the context of applicative theories.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theories and Ordinals in Proof Theory.Michael Rathjen - 2006 - Synthese 148 (3):719-743.
    How do ordinals measure the strength and computational power of formal theories? This paper is concerned with the connection between ordinal representation systems and theories established in ordinal analyses. It focusses on results which explain the nature of this connection in terms of semantical and computational notions from model theory, set theory, and generalized recursion theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The [mathematical formula] quantification operator in explicit mathematics with universes and iterated fixed point theories with ordinals.Markus Marzetta & Thomas Strahm - 1997 - Archive for Mathematical Logic 36 (6):391-413.
    This paper is about two topics: 1. systems of explicit mathematics with universes and a non-constructive quantification operator $\mu$; 2. iterated fixed point theories with ordinals. We give a proof-theoretic treatment of both families of theories; in particular, ordinal theories are used to get upper bounds for explicit theories with finitely many universes.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ordered groups: A case study in reverse mathematics.Reed Solomon - 1999 - Bulletin of Symbolic Logic 5 (1):45-58.
    The fundamental question in reverse mathematics is to determine which set existence axioms are required to prove particular theorems of mathematics. In addition to being interesting in their own right, answers to this question have consequences in both effective mathematics and the foundations of mathematics. Before discussing these consequences, we need to be more specific about the motivating question.Reverse mathematics is useful for studying theorems of either countable or essentially countable mathematics. Essentially countable mathematics is a vague term that is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Saving logic from paradox via nonclassical recapture.Luca Castaldo - 2024 - Philosophical Studies 181 (6):1547-1563.
    The Liar paradox arguably shows that a coherent and self-applicable notion of truth is governed by nonclassical logic. It then seems natural to conclude that classical logic is inadequate for defining a truth theory. In this article, we argue that this is not the case. In the spirit of Reinhardt (Math Logic Formal Syst 94:227, 1985; J Philos Logic 15:219–251, 1986), and in analogy with Hilbert’s program for the foundation of classical mathematics, we will articulate an instrumentalist justification for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Odel's dialectica interpretation and its two-way stretch.Solomon Feferman - manuscript
    In 1958, G¨ odel published in the journal Dialectica an interpretation of intuitionistic number theory in a quantifier-free theory of functionals of finite type; this subsequently came to be known as G¨ odel’s functional or Dialectica interpretation. The article itself was written in German for an issue of that journal in honor of Paul Bernays’ 70th birthday. In 1965, Bernays told G¨.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The development of programs for the foundations of mathematics in the first third of the 20th century.Solomon Feferman - manuscript
    The most prominent “schools” or programs for the foundations of mathematics that took shape in the first third of the 20th century emerged directly from, or in response to, developments in mathematics and logic in the latter part of the 19th century. The first of these programs, so-called logicism, had as its aim the reduction of mathematics to purely logical principles. In order to understand properly its achievements and resulting problems, it is necessary to review the background from that previous (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • Deciding the undecidable: Wrestling with Hilbert's problems.Solomon Feferman - manuscript
    In the year 1900, the German mathematician David Hilbert gave a dramatic address in Paris, at the meeting of the 2nd International Congress of Mathematicians—an address which was to have lasting fame and importance. Hilbert was at that point a rapidly rising star, if not superstar, in mathematics, and before long he was to be ranked with Henri Poincar´.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Editorial introduction.Volker Halbach - 2001 - Studia Logica 68 (1):3-20.
    I survey some important semantical and axiomatic theories of self-referential truth. Kripke's fixed-point theory, the revision theory of truth and appraoches involving fuzzy logic are the main examples of semantical theories. I look at axiomatic theories devised by Cantini, Feferman, Freidman and Sheard. Finally some applications of the theory of self-referential truth are considered.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical proof theory in the light of ordinal analysis.Reinhard Kahle - 2002 - Synthese 133 (1/2):237 - 255.
    We give an overview of recent results in ordinal analysis. Therefore, we discuss the different frameworks used in mathematical proof-theory, namely "subsystem of analysis" including "reverse mathematics", "Kripke-Platek set theory", "explicit mathematics", "theories of inductive definitions", "constructive set theory", and "Martin-Löf's type theory".
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark