Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Modal logic.Yde Venema - 2000 - Philosophical Review 109 (2):286-289.
    Modern modal logic originated as a branch of philosophical logic in which the concepts of necessity and possibility were investigated by means of a pair of dual operators that are added to a propositional or first-order language. The field owes much of its flavor and success to the introduction in the 1950s of the “possible-worlds” semantics in which the modal operators are interpreted via some “accessibility relation” connecting possible worlds. In subsequent years, modal logic has received attention as an attractive (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • That All Normal Extensions of S4.3 Have the Finite Model Property.R. A. Bull - 1966 - Mathematical Logic Quarterly 12 (1):341-344.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Logics Containing S 4.3.Kit Fine - 1971 - Mathematical Logic Quarterly 17 (1):371-376.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Subdirectly Irreducible Modal Algebras and Initial Frames.Sambin Giovanni - 1999 - Studia Logica 62 (2):269-282.
    The duality between general frames and modal algebras allows to transfer a problem about the relational (Kripke) semantics into algebraic terms, and conversely. We here deal with the conjecture: the modal algebra A is subdirectly irreducible (s.i.) if and only if the dual frame A* is generated. We show that it is false in general, and that it becomes true under some mild assumptions, which include the finite case and the case of K4. We also prove that a Kripke frame (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Algebraic semantics for modal logics I.E. J. Lemmon - 1966 - Journal of Symbolic Logic 31 (1):46-65.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)A solution of the decision problem for the Lewis systems s2 and s4, with an application to topology.J. C. C. McKinsey - 1941 - Journal of Symbolic Logic 6 (4):117-134.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Algebraic semantics for modal logics II.E. J. Lemmon - 1966 - Journal of Symbolic Logic 31 (2):191-218.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Canonical formulas for k4. part II: Cofinal subframe logics.Michael Zakharyaschev - 1996 - Journal of Symbolic Logic 61 (2):421-449.
    Related Works: Part I: Michael Zakharyaschev. Canonical Formulas for $K4$. Part I: Basic Results. J. Symbolic Logic, Volume 57, Issue 4 , 1377--1402. Project Euclid: euclid.jsl/1183744119 Part III: Michael Zakharyaschev. Canonical Formulas for K4. Part III: The Finite Model Property. J. Symbolic Logic, Volume 62, Issue 3 , 950--975. Project Euclid: euclid.jsl/1183745306.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A dual characterization of subdirectly irreducible BAOs.Yde Venema - 2004 - Studia Logica 77 (1):105 - 115.
    We give a characterization of the simple, and of the subdirectly irreducible boolean algebras with operators (including modal algebras), in terms of the dual descriptive frame, or, topological relational structure. These characterizations involve a special binary topo-reachability relation on the dual structure; we call a point u a topo-root of the dual structure if every ultrafilter is topo-reachable from u. We prove that a boolean algebra with operators is simple iff every point in the dual structure is a topo-root; and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Canonical Rules.Emil Jeřábek - 2009 - Journal of Symbolic Logic 74 (4):1171 - 1205.
    We develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Logics containing k4. part II.Kit Fine - 1985 - Journal of Symbolic Logic 50 (3):619-651.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Every world can see a reflexive world.G. E. Hughes - 1990 - Studia Logica 49 (2):175 - 181.
    Let be the class of frames satisfying the condition.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Locally Finite Reducts of Heyting Algebras and Canonical Formulas.Guram Bezhanishvili & Nick Bezhanishvili - 2017 - Notre Dame Journal of Formal Logic 58 (1):21-45.
    The variety of Heyting algebras has two well-behaved locally finite reducts, the variety of bounded distributive lattices and the variety of implicative semilattices. The variety of bounded distributive lattices is generated by the →-free reducts of Heyting algebras, while the variety of implicative semilattices is generated by the ∨-free reducts. Each of these reducts gives rise to canonical formulas that generalize Jankov formulas and provide an axiomatization of all superintuitionistic logics. The ∨-free reducts of Heyting algebras give rise to the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Stable canonical rules.Guram Bezhanishvili, Nick Bezhanishvili & Rosalie Iemhoff - 2016 - Journal of Symbolic Logic 81 (1):284-315.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Tools and Techniques in Modal Logic.Guram Bezhanishvili - 2001 - Bulletin of Symbolic Logic 7 (2):278-279.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Canonical formulas for k4. part I: Basic results.Michael Zakharyaschev - 1992 - Journal of Symbolic Logic 57 (4):1377-1402.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Cofinal Stable Logics.Guram Bezhanishvili, Nick Bezhanishvili & Julia Ilin - 2016 - Studia Logica 104 (6):1287-1317.
    We generalize the \}\)-canonical formulas to \}\)-canonical rules, and prove that each intuitionistic multi-conclusion consequence relation is axiomatizable by \}\)-canonical rules. This yields a convenient characterization of stable superintuitionistic logics. The \}\)-canonical formulas are analogues of the \}\)-canonical formulas, which are the algebraic counterpart of Zakharyaschev’s canonical formulas for superintuitionistic logics. Consequently, stable si-logics are analogues of subframe si-logics. We introduce cofinal stable intuitionistic multi-conclusion consequence relations and cofinal stable si-logics, thus answering the question of what the analogues of cofinal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Splitting lattices of logics.Wolfgang Rautenberg - 1980 - Archive for Mathematical Logic 20 (3-4):155-159.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Continuity, freeness, and filtrations.Silvio Ghilardi - 2010 - Journal of Applied Non-Classical Logics 20 (3):193-217.
    The role played by continuous morphisms in propositional modal logic is investigated: it turns out that they are strictly related to filtrations and to suitable variants of the notion of a free algebra. We also employ continuous morphisms in incremental constructions of (standard) finitely generated free ????4-algebras.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An algebraic look at filtrations in modal logic.W. Conradie, W. Morton & C. J. van Alten - 2013 - Logic Journal of the IGPL 21 (5):788-811.
    Download  
     
    Export citation  
     
    Bookmark   3 citations