Switch to: Citations

Add references

You must login to add references.
  1. On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Logic, Logic and Logic.George Boolos & Richard C. Jeffrey - 1998 - Studia Logica 66 (3):428-432.
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Some measurement-theoretic concerns about Hale's ‘reals by abstraction';.Vadim Batitsky - 2002 - Philosophia Mathematica 10 (3):286-303.
    Hale proposes a neo-logicist definition of real numbers by abstraction as ratios defined on a complete ordered domain of quantities (magnitudes). I argue that Hale's definition faces insuperable epistemological and ontological difficulties. On the epistemological side, Hale is committed to an explanation of measurement applications of reals which conflicts with several theorems in measurement theory. On the ontological side, Hale commits himself to the necessary and a priori existence of at least one complete ordered domain of quantities, which is extremely (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Abstraction and Epistemic Economy.Marco Panza - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Cham, Switzerland: Springer Verlag.
    Most of the arguments usually appealed to in order to support the view that some abstraction principles are analytic depend on ascribing to them some sort of existential parsimony or ontological neutrality, whereas the opposite arguments, aiming to deny this view, contend this ascription. As a result, other virtues that these principles might have are often overlooked. Among them, there is an epistemic virtue which I take these principles to have, when regarded in the appropriate settings, and which I suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege’s Constraint and the Nature of Frege’s Foundational Program.Marco Panza & Andrea Sereni - 2019 - Review of Symbolic Logic 12 (1):97-143.
    Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ ($AC$) or ‘Frege Constraint’ ($FC$), the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how$AC$generalizes Frege’s views while$FC$comes closer to his original conceptions. Different authors diverge on the interpretation of$FC$and on whether it (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Frege: Philosophy of Mathematics.Michael DUMMETT - 1991 - Philosophy 68 (265):405-411.
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • Functions and Generality of Logic: Reflections on Dedekind's and Frege's Logicisms.Gabriel Sandu, Marco Panza & Hourya Benis-Sinaceur (eds.) - 2015 - Cham, Switzerland: Springer Verlag.
    Part I of Frege’s Grundgesetze is devoted to the “exposition [Darlegung]” of his formal system.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege's Constraint.Crispin Wright - 2000 - Notre Dame Journal of Formal Logic 41 (4):317--334.
    We now know of a number of ways of developing real analysis on a basis of abstraction principles and second-order logic. One, outlined by Shapiro in his contribution to this volume, mimics Dedekind in identifying the reals with cuts in the series of rationals under their natural order. The result is an essentially structuralist conception of the reals. An earlier approach, developed by Hale in his "Reals byion" program differs by placing additional emphasis upon what I here term Frege's Constraint, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Abstraction Relations Need Not Be Reflexive.Jonathan Payne - 2013 - Thought: A Journal of Philosophy 2 (2):137-147.
    Neo-Fregeans such as Bob Hale and Crispin Wright seek a foundation of mathematics based on abstraction principles. These are sentences involving a relation called the abstraction relation. It is usually assumed that abstraction relations must be equivalence relations, so reflexive, symmetric and transitive. In this article I argue that abstraction relations need not be reflexive. I furthermore give an application of non-reflexive abstraction relations to restricted abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Reals by Abstraction.Bob Hale - 2000 - Philosophia Mathematica 8 (2):100--123.
    On the neo-Fregean approach to the foundations of mathematics, elementary arithmetic is analytic in the sense that the addition of a principle wliich may be held to IMJ explanatory of the concept of cardinal number to a suitable second-order logical basis suffices for the derivation of its basic laws. This principle, now commonly called Hume's principle, is an example of a Fregean abstraction principle. In this paper, I assume the correctness of the neo-Fregean position on elementary aritlunetic and seek to (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Basic laws of arithmetic.Gottlob Frege - 1893 - In Basic Laws of Arithmetic. Oxford, U.K.: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Was Frege a Logicist for Arithmetic?Marco Panza - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 87-112.
    The paper argues that Frege’s primary foundational purpose concerning arithmetic was neither that of making natural numbers logical objects, nor that of making arithmetic a part of logic, but rather that of assigning to it an appropriate place in the architectonics of mathematics and knowledge, by immersing it in a theory of numbers of concepts and making truths about natural numbers, and/or knowledge of them transparent to reason without the medium of senses and intuition.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Frege's Other Program.Aldo Antonelli & Robert May - 2005 - Notre Dame Journal of Formal Logic 46 (1):1-17.
    Frege's logicist program requires that arithmetic be reduced to logic. Such a program has recently been revamped by the "neologicist" approach of Hale and Wright. Less attention has been given to Frege's extensionalist program, according to which arithmetic is to be reconstructed in terms of a theory of extensions of concepts. This paper deals just with such a theory. We present a system of second-order logic augmented with a predicate representing the fact that an object x is the extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • ‘Neo-logicist‘ logic is not epistemically innocent.Stewart Shapiro & Alan Weir - 2000 - Philosophia Mathematica 8 (2):160--189.
    The neo-logicist argues tliat standard mathematics can be derived by purely logical means from abstraction principles—such as Hume's Principle— which are held to lie 'epistcmically innocent'. We show that the second-order axiom of comprehension applied to non-instantiated properties and the standard first-order existential instantiation and universal elimination principles are essential for the derivation of key results, specifically a theorem of infinity, but have not been shown to be epistemically innocent. We conclude that the epistemic innocence of mathematics has not been (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Frege's Theory of Real Numbers.Peter M. Simons - 1987 - History and Philosophy of Logic 8 (1):25--44.
    Frege's theory of real numbers has undeservedly received almost no attention, in part because what we have is only a fragment. Yet his theory is interesting for the light it throws on logicism, and it is quite different from standard modern approaches. Frege polemicizes vigorously against his contemporaries, sketches the main features of his own radical alternative, and begins the formal development. This paper summarizes and expounds what he has to say, and goes on to reconstruct the most important steps (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Real numbers, quantities, and measurement.Bob Hale - 2002 - Philosophia Mathematica 10 (3):304-323.
    Defining the real numbers by abstraction as ratios of quantities gives prominence to then- applications in just the way that Frege thought we should. But if all the reals are to be obtained in this way, it is necessary to presuppose a rich domain of quantities of a land we cannot reasonably assume to be exemplified by any physical or other empirically measurable quantities. In consequence, an explanation of the applications of the reals, defined in this way, must proceed indirectly. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations