Switch to: References

Add citations

You must login to add citations.
  1. Toward an Epistemology of Art.Arnold Cusmariu - 2016 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 3 (1):37-64.
    An epistemology of art has seemed problematic mainly because of arguments claiming that an essential element of a theory of knowledge, truth, has no place in aesthetic contexts. For, if it is objectively true that something is beautiful, it seems to follow that the predicate “is beautiful” expresses a property – a view asserted by Plato but denied by Hume and Kant. But then, if the belief that something is beautiful is not objectively true, we cannot be said to know (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Aristotle's Prior Analytics and Boole's Laws of Thought.John Corcoran - 2003 - History and Philosophy of Logic 24 (4):261-288.
    Prior Analytics by the Greek philosopher Aristotle and Laws of Thought by the English mathematician George Boole are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle's system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not discuss many other historically and philosophically important aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • On Specifying Truth-Conditions.Agustín Rayo - 2008 - Philosophical Review 117 (3):385-443.
    This essay is a study of ontological commitment, focused on the special case of arithmetical discourse. It tries to get clear about what would be involved in a defense of the claim that arithmetical assertions are ontologically innocent and about why ontological innocence matters. The essay proceeds by questioning traditional assumptions about the connection between the objects that are used to specify the truth-conditions of a sentence, on the one hand, and the objects whose existence is required in order for (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Necessarily Maybe. Quantifiers, Modality and Vagueness.Alessandro Torza - 2015 - In Quantifiers, Quantifiers, and Quantifiers. Themes in Logic, Metaphysics, and Language. (Synthese Library vol. 373). Springer. pp. 367-387.
    Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 1 is a discussion of various possible sources of vague modality. Section 2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Section 3, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Correct language use: how syntactic and normative constraints converge.Florian Demont - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unrestricted Quantification.Salvatore Florio - 2014 - Philosophy Compass 9 (7):441-454.
    Semantic interpretations of both natural and formal languages are usually taken to involve the specification of a domain of entities with respect to which the sentences of the language are to be evaluated. A question that has received much attention of late is whether there is unrestricted quantification, quantification over a domain comprising absolutely everything there is. Is there a discourse or inquiry that has absolute generality? After framing the debate, this article provides an overview of the main arguments for (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Hierarchies Ontological and Ideological.Øystein Linnebo & Agustín Rayo - 2012 - Mind 121 (482):269 - 308.
    Gödel claimed that Zermelo-Fraenkel set theory is 'what becomes of the theory of types if certain superfluous restrictions are removed'. The aim of this paper is to develop a clearer understanding of Gödel's remark, and of the surrounding philosophical terrain. In connection with this, we discuss some technical issues concerning infinitary type theories and the programme of developing the semantics for higher-order languages in other higher-order languages.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Second-Order Arithmetic Sans Sets.L. Berk - 2013 - Philosophia Mathematica 21 (3):339-350.
    This paper examines the ontological commitments of the second-order language of arithmetic and argues that they do not extend beyond the first-order language. Then, building on an argument by George Boolos, we develop a Tarski-style definition of a truth predicate for the second-order language of arithmetic that does not involve the assignment of sets to second-order variables but rather uses the same class of assignments standardly used in a definition for the first-order language.
    Download  
     
    Export citation  
     
    Bookmark  
  • The right to believe truth paradoxes of moral regret for no belief and the role(s) of logic in philosophy of religion.Billy Joe Lucas - 2012 - International Journal for Philosophy of Religion 72 (2):115-138.
    I offer you some theories of intellectual obligations and rights (virtue Ethics): initially, RBT (a Right to Believe Truth, if something is true it follows one has a right to believe it), and, NDSM (one has no right to believe a contradiction, i.e., No right to commit Doxastic Self-Mutilation). Evidence for both below. Anthropology, Psychology, computer software, Sociology, and the neurosciences prove things about human beliefs, and History, Economics, and comparative law can provide evidence of value about theories of rights. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Filosofia da Linguagem - uma introdução.Sofia Miguens - 2007 - Porto: Universidade do Porto. Faculdade de Letras.
    O presente manual tem como intenção constituir um guia para uma disciplina introdutória de filosofia da linguagem. Foi elaborado a partir da leccionação da disciplina de Filosofia da Linguagem I na Faculdade de Letras da Universidade do Porto desde 2001. A disciplina de Filosofia da Linguagem I ocupa um semestre lectivo e proporciona aos estudantes o primeiro contacto sistemático com a área da filosofia da linguagem. Pretende-se que este manual ofereça aos estudantes os instrumentos necessários não apenas para acompanhar uma (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interface transparency and the psychosemantics of most.Jeffrey Lidz, Paul Pietroski, Tim Hunter & Justin Halberda - 2011 - Natural Language Semantics 19 (3):227-256.
    This paper proposes an Interface Transparency Thesis concerning how linguistic meanings are related to the cognitive systems that are used to evaluate sentences for truth/falsity: a declarative sentence S is semantically associated with a canonical procedure for determining whether S is true; while this procedure need not be used as a verification strategy, competent speakers are biased towards strategies that directly reflect canonical specifications of truth conditions. Evidence in favor of this hypothesis comes from a psycholinguistic experiment examining adult judgments (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Concepts, meanings and truth: First nature, second nature and hard work.Paul M. Pietroski - 2010 - Mind and Language 25 (3):247-278.
    I argue that linguistic meanings are instructions to build monadic concepts that lie between lexicalizable concepts and truth-evaluable judgments. In acquiring words, humans use concepts of various adicities to introduce concepts that can be fetched and systematically combined via certain conjunctive operations, which require monadic inputs. These concepts do not have Tarskian satisfaction conditions. But they provide bases for refinements and elaborations that can yield truth-evaluable judgments. Constructing mental sentences that are true or false requires cognitive work, not just an (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantifying weak emergence.Paul Hovda - 2008 - Minds and Machines 18 (4):461-473.
    The concept of weak emergence is a refinement or specification of the intuitive, general notion of emergence. Basically, a fact about a system is said to be weakly emergent if its holding both (i) is derivable from the fundamental laws of the system together with some set of basic (non-emergent) facts about it, and yet (ii) is only derivable in a particular manner, called “simulation.” This essay analyzes the application of this notion Conway’s Game of Life, and concludes that a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Review of H. Laycock, Words Without Objects: Semantics, Ontology, and Logic for Non-Singularity[REVIEW]Thomas J. McKay - 2008 - Canadian Journal of Philosophy 38 (2):pp. 301-323.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kant on the Nature of Logical Laws.Clinton Tolley - 2006 - Philosophical Topics 34 (1-2):371-407.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Does every sentence like this exhibit a scope ambiguity? Paul Pietroski and Norbert Hornstein, univ. Of maryland.Paul Pietrowski - manuscript
    We think recent work in linguistics tells against the traditional claim that a string of words like (1) Every girl pushed some truck has two readings, indicated by the following formal language sentences (with restricted quantifiers): (1a) [!x:Gx]["y:Ty]Pxy (1b) ["y:Ty][!x:Gx]Pxy. In our view, (1) does not have any b-reading in which ‘some truck’ has widest scope.1 The issue turns on details concerning syntactic transformations and terms like ‘every’. This illustrates an important point for the study of natural language: ambiguity hypotheses (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Aristotle's Prior Analytics and Boole's Laws of thought.John Corcoran - 2003 - History and Philosophy of Logic. 24 (4):261-288.
    Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Gottlob Frege.Kevin C. Klement - 2001 - Internet Encyclopedia of Philosophy.
    Gottlob Frege (1848-1925) was a German logician, mathematician and philosopher who played a crucial role in the emergence of modern logic and analytic philosophy. Frege's logical works were revolutionary, and are often taken to represent the fundamental break between contemporary approaches and the older, Aristotelian tradition. He invented modern quantificational logic, and created the first fully axiomatic system for logic, which was complete in its treatment of propositional and first-order logic, and also represented the first treatment of higher-order logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Abstraction and additional nature.Bob Hale & Crispin Wright - 2008 - Philosophia Mathematica 16 (2):182-208.
    What is wrong with abstraction’, Michael Potter and Peter Sullivan explain a further objection to the abstractionist programme in the foundations of mathematics which they first presented in their ‘Hale on Caesar’ and which they believe our discussion in The Reason's Proper Study misunderstood. The aims of the present note are: To get the character of this objection into sharper focus; To explore further certain of the assumptions—primarily, about reference-fixing in mathematics, about certain putative limitations of abstractionist set theory, and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • ‘Now’ and ‘Then’ in Tense Logic.Ulrich Meyer - 2009 - Journal of Philosophical Logic 38 (2):229-247.
    According to Hans Kamp and Frank Vlach, the two-dimensional tense operators “now” and “then” are ineliminable in quantified tense logic. This is often adduced as an argument against tense logic, and in favor of an extensional account that makes use of explicit quantification over times. The aim of this paper is to defend tense logic against this attack. It shows that “now” and “then” are eliminable in quantified tense logic, provided we endow it with enough quantificational structure. The operators might (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Nature of Appearance in Kant’s Transcendentalism: A Seman- tico-Cognitive Analysis.Sergey L. Katrechko - 2018 - Kantian Journal 37 (3):41-55.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Everything.Timothy Williamson - 2003 - Philosophical Perspectives 17 (1):415–465.
    On reading the last sentence, did you interpret me as saying falsely that everything — everything in the entire universe — was packed into my carry-on baggage? Probably not. In ordinary language, ‘everything’ and other quantifiers (‘something’, ‘nothing’, ‘every dog’, ...) often carry a tacit restriction to a domain of contextually relevant objects, such as the things that I need to take with me on my journey. Thus a sentence of the form ‘Everything Fs’ is true as uttered in a (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • A puzzle about de rebus beliefs.Vann McGee & Agustín Rayo - 2000 - Analysis 60 (4):297–299.
    George Boolos (1984, 1985) has extensively investigated plural quantifi- cation, as found in such locutions as the Geach-Kaplan sentence There are critics who admire only one another, and he found that their logic cannot be adequately formalized within the first-order predicate calculus. If we try to formalize the sentence by a paraphrase using individual variables that range over critics, or over sets or collections or fusions of critics, we misrepresent its logical structure. To represent plural quantification adequately requires the logical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Plural quantification exposed.Øystein Linnebo - 2003 - Noûs 37 (1):71–92.
    This paper criticizes George Boolos's famous use of plural quantification to argue that monadic second-order logic is pure logic. I deny that plural quantification qualifies as pure logic and express serious misgivings about its alleged ontological innocence. My argument is based on an examination of what is involved in our understanding of the impredicative plural comprehension schema.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Neo-fregeanism and quantifier variance.Theodore Sider - 2007 - Aristotelian Society Supplementary Volume 81 (1):201–232.
    NeoFregeanism is an intriguing but elusive philosophy of mathematical existence. At crucial points, it goes cryptic and metaphorical. I want to put forward an interpretation of neoFregeanism—perhaps not one that actual neoFregeans will embrace—that makes sense of much of what they say. NeoFregeans should embrace quantifier variance.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • A Puzzle About Ontological Commitments.Philip A. Ebert - 2008 - Philosophia Mathematica 16 (2):209-226.
    This paper raises and then discusses a puzzle concerning the ontological commitments of mathematical principles. The main focus here is Hume's Principle—a statement that, embedded in second-order logic, allows for a deduction of the second-order Peano axioms. The puzzle aims to put pressure on so-called epistemic rejectionism, a position that rejects the analytic status of Hume's Principle. The upshot will be to elicit a new and very basic disagreement between epistemic rejectionism and the neo-Fregeans, defenders of the analytic status of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The nature of epistemic space.David J. Chalmers - 2011 - In Andy Egan & Brian Weatherson (eds.), Epistemic Modality. Oxford, GB: Oxford University Press.
    A natural way to think about epistemic possibility is as follows. When it is epistemically possible (for a subject) that p, there is an epistemically possible scenario (for that subject) in which p. The epistemic scenarios together constitute epistemic space. It is surprisingly difficult to make the intuitive picture precise. What sort of possibilities are we dealing with here? In particular, what is a scenario? And what is the relationship between scenarios and items of knowledge and belief? This chapter tries (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what causes numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Replies to Critics.Paul Pietroski - 2022 - Philosophy and Phenomenological Research 105 (3):752-764.
    Philosophy and Phenomenological Research, EarlyView.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hume’s Principle, Bad Company, and the Axiom of Choice.Sam Roberts & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (4):1158-1176.
    One prominent criticism of the abstractionist program is the so-called Bad Company objection. The complaint is that abstraction principles cannot in general be a legitimate way to introduce mathematical theories, since some of them are inconsistent. The most notorious example, of course, is Frege’s Basic Law V. A common response to the objection suggests that an abstraction principle can be used to legitimately introduce a mathematical theory precisely when it is stable: when it can be made true on all sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against Fregean Quantification.Bryan Pickel & Brian Rabern - 2023 - Ergo: An Open Access Journal of Philosophy 9 (37):971-1007.
    There are two dominant approaches to quantification: the Fregean and the Tarskian. While the Tarskian approach is standard and familiar, deep conceptual objections have been pressed against its employment of variables as genuine syntactic and semantic units. Because they do not explicitly rely on variables, Fregean approaches are held to avoid these worries. The apparent result is that the Fregean can deliver something that the Tarskian is unable to, namely a compositional semantic treatment of quantification centered on truth and reference. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kant Versus Frege on Arithmetic.Nora Grigore - 2022 - Axiomathes 32 (2):263-281.
    Kant's claim that arithmetical truths are synthetic is famously contradicted by Frege, who considers them to be analytical. It may seem that this is a mere dispute about linguistic labels, since both Kant and Frege agree that arithmetical truths are a priori and informative, and, therefore, it is only a matter of how one chooses to call them. I argue that the choice between calling arithmetic “synthetic” or “analytic” has a deeper significance. I claim that the dispute is not a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Frege’s Theory of Real Numbers: A Consistent Rendering.Francesca Boccuni & Marco Panza - forthcoming - Review of Symbolic Logic:1-44.
    Frege's definition of the real numbers, as envisaged in the second volume of Grundgesetze der Arithmetik, is fatally flawed by the inconsistency of Frege's ill-fated Basic Law V. We restate Frege's definition in a consistent logical framework and investigate whether it can provide a logical foundation of real analysis. Our conclusion will deem it doubtful that such a foundation along the lines of Frege's own indications is possible at all.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasons and Causes in Psychiatry: Ideas from Donald Davidson’s Work.Elisabetta Lalumera - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 281-296.
    Though the divide between reason-based and causal-explanatory approaches in psychiatry and psychopathology is old and deeply rooted, current trends involving multi-factorial explanatory models and evidence-based approaches to interpersonal psychotherapy, show that it has already been implicitly bridged. These trends require a philosophical reconsideration of how reasons can be causes. This paper contributes to that trajectory by arguing that Donald Davidson’s classic paradigm of 1963 is still a valid option.
    Download  
     
    Export citation  
     
    Bookmark