Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)The British Journal for the Philosophy of Science | Vol 75, No 1.Mathieu Charbonneau - 2019 - British Journal for the Philosophy of Science 71 (4):1209-1233.
    A leading idea of cultural evolutionary theory is that for human cultures to undergo evolutionary change, cultural transmission must generally serve as a high-fidelity copying process. In analogy to genetic inheritance, the high fidelity of human cultural transmission would act as a safeguard against the transformation and loss of cultural information, thus ensuring both the stability and longevity of cultural traditions. Cultural fidelity would also serve as the key difference-maker between human cumulative cultures and non-human non-cumulative traditions, explaining why only (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Why the missing heritability might not be in the DNA.Pierrick Bourrat, Qiaoying Lu & Eva Jablonka - 2017 - Bioessays 39 (7):1700067.
    Graphical AbstractThere are four major hypotheses (H1, H2, H3, and H4) as to the source of missing heritability. We propose that estimates obtained from GWAS underestimate heritability by not taking into account non-DNA (epigenetic) sources of heritability. Taking those factors into account (H4) should result in increased heritability estimates.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Conditions for Evolution by Natural Selection.Peter Godfrey-Smith - 2007 - Journal of Philosophy 104 (10):489-516.
    Both biologists and philosophers often make use of simple verbal formulations of necessary and sufficient conditions for evolution by natural selection (ENS). Such summaries go back to Darwin's Origin of Species (especially the "Recapitulation"), but recent ones are more compact.1 Perhaps the most commonly cited formulation is due to Lewontin.2 These summaries tend to have three or four conditions, where the core requirement is a combination of variation, heredity, and fitness differences. The summaries are employed in several ways. First, they (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • From survivors to replicators: evolution by natural selection revisited.Pierrick Bourrat - 2014 - Biology and Philosophy 29 (4):517-538.
    For evolution by natural selection to occur it is classically admitted that the three ingredients of variation, difference in fitness and heredity are necessary and sufficient. In this paper, I show using simple individual-based models, that evolution by natural selection can occur in populations of entities in which neither heredity nor reproduction are present. Furthermore, I demonstrate by complexifying these models that both reproduction and heredity are predictable Darwinian products (i.e. complex adaptations) of populations initially lacking these two properties but (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A New Foundation for the Propensity Interpretation of Fitness.Charles H. Pence & Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (4):851-881.
    The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Reply to Sober and Waters. [REVIEW]Samir Okasha - 2010 - Philosophy and Phenomenological Research 82 (1):241-248.
    Elliott Sober and Ken Waters both raise interesting and difficult challenges for various aspects of the position I set out in Evolution and the Levels of the Selection. I am grateful to them for their penetrating criticisms of my work, and find myself in agreement with many of their points.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Walsh on causes and evolution.Robert Northcott - 2010 - Philosophy of Science 77 (3):457-467.
    Denis Walsh has written a striking new defense in this journal of the statisticalist (i.e., noncausalist) position regarding the forces of evolution. I defend the causalist view against his new objections. I argue that the heart of the issue lies in the nature of nonadditive causation. Detailed consideration of that turns out to defuse Walsh’s ‘description‐dependence’ critique of causalism. Nevertheless, the critique does suggest a basis for reconciliation between the two competing views. *Received December 2009; revised December 2009. †To contact (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Models and fictions in science.Peter Godfrey-Smith - 2009 - Philosophical Studies 143 (1):101 - 116.
    Non-actual model systems discussed in scientific theories are compared to fictions in literature. This comparison may help with the understanding of similarity relations between models and real-world target systems. The ontological problems surrounding fictions in science may be particularly difficult, however. A comparison is also made to ontological problems that arise in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • The propensity interpretation of fitness.Susan K. Mills & John H. Beatty - 1979 - Philosophy of Science 46 (2):263-286.
    The concept of "fitness" is a notion of central importance to evolutionary theory. Yet the interpretation of this concept and its role in explanations of evolutionary phenomena have remained obscure. We provide a propensity interpretation of fitness, which we argue captures the intended reference of this term as it is used by evolutionary theorists. Using the propensity interpretation of fitness, we provide a Hempelian reconstruction of explanations of evolutionary phenomena, and we show why charges of circularity which have been levelled (...)
    Download  
     
    Export citation  
     
    Bookmark   205 citations  
  • Two ways of thinking about fitness and natural selection.Mohan Matthen & André Ariew - 2002 - Journal of Philosophy 99 (2):55-83.
    How do fitness and natural selection relate to other evolutionary factors like architectural constraint, mode of reproduction, and drift? In one way of thinking, drawn from Newtonian dynamics, fitness is one force driving evolutionary change and added to other factors. In another, drawn from statistical thermodynamics, it is a statistical trend that manifests itself in natural selection histories. It is argued that the first model is incoherent, the second appropriate; a hierarchical realization model is proposed as a basis for a (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • The reference class problem is your problem too.Alan Hájek - 2007 - Synthese 156 (3):563--585.
    The reference class problem arises when we want to assign a probability to a proposition (or sentence, or event) X, which may be classified in various ways, yet its probability can change depending on how it is classified. The problem is usually regarded as one specifically for the frequentist interpretation of probability and is often considered fatal to it. I argue that versions of the classical, logical, propensity and subjectivist interpretations also fall prey to their own variants of the reference (...)
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • The Evolutionary Gene and the Extended Evolutionary Synthesis.Qiaoying Lu & Pierrick Bourrat - 2017 - British Journal for the Philosophy of Science 69 (3):775-800.
    Advocates of an ‘extended evolutionary synthesis’ have claimed that standard evolutionary theory fails to accommodate epigenetic inheritance. The opponents of the extended synthesis argue that the evidence for epigenetic inheritance causing adaptive evolution in nature is insufficient. We suggest that the ambiguity surrounding the conception of the gene represents a background semantic issue in the debate. Starting from Haig’s gene-selectionist framework and Griffiths and Neumann-Held’s notion of the evolutionary gene, we define senses of ‘gene’, ‘environment’, and ‘phenotype’ in a way (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Interpreting Heritability Causally.Kate E. Lynch & Pierrick Bourrat - 2017 - Philosophy of Science 84 (1):14-34.
    A high heritability estimate usually corresponds to a situation in which trait variation is largely caused by genetic variation. However, in some cases of gene-environment covariance, causal intuitions about the sources of trait difference can vary, leading experts to disagree as to how the heritability estimate should be interpreted. We argue that the source of contention for these cases is an inconsistency in the interpretation of the concepts ‘genotype’, ‘phenotype’, and ‘environment’. We propose an interpretation of these terms under which (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Confusions of Fitness.AndrÉ Ariew - 2004 - British Journal for the Philosophy of Science 55 (2):347-363.
    The central point of this essay is to demonstrate the incommensurability of ‘Darwinian fitness’ with the numeric values associated with reproductive rates used in population genetics. While sometimes both are called ‘fitness’, they are distinct concepts coming from distinct explanatory schemes. Further, we try to outline a possible answer to the following question: from the natural properties of organisms and a knowledge of their environment, can we construct an algorithm for a particular kind of organismic life-history pattern that itself will (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • What determines biological fitness? The problem of the reference environment.Marshall Abrams - 2009 - Synthese 166 (1):21-40.
    Organisms' environments are thought to play a fundamental role in determining their fitness and hence in natural selection. Existing intuitive conceptions of environment are sufficient for biological practice. I argue, however, that attempts to produce a general characterization of fitness and natural selection are incomplete without the help of general conceptions of what conditions are included in the environment. Thus there is a "problem of the reference environment"—more particularly, problems of specifying principles which pick out those environmental conditions which determine (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Is Organismic Fitness at the Basis of Evolutionary Theory?Charles H. Pence & Grant Ramsey - 2015 - Philosophy of Science 82 (5):1081-1091.
    Fitness is a central theoretical concept in evolutionary theory. Despite its importance, much debate has occurred over how to conceptualize and formalize fitness. One point of debate concerns the roles of organismic and trait fitness. In a recent addition to this debate, Elliott Sober argues that trait fitness is the central fitness concept, and that organismic fitness is of little value. In this paper, by contrast, we argue that it is organismic fitness that lies at the bases of both the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Individuality and Selection.David L. Hull - 1980 - Annual Review of Ecology and Systematics 11:311-332.
    Download  
     
    Export citation  
     
    Bookmark   234 citations  
  • Trait fitness is not a propensity, but fitness variation is.Elliott Sober - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):336-341.
    The propensity interpretation of fitness draws on the propensity interpretation of probability, but advocates of the former have not attended sufficiently to problems with the latter. The causal power of C to bring about E is not well-represented by the conditional probability Pr. Since the viability fitness of trait T is the conditional probability Pr, the viability fitness of the trait does not represent the degree to which having the trait causally promotes surviving. The same point holds for fertility fitness. (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The analysis of variance and the analysis of causes.Richard C. Lewontin - 1974 - American Journal of Human Genetics 26 (3):400-11.
    Download  
     
    Export citation  
     
    Bookmark   248 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Matthen and Ariew’s Obituary for Fitness: Reports of its Death have been Greatly Exaggerated. [REVIEW]Alexander Rosenberg & Frederic Bouchard - 2005 - Biology and Philosophy 20 (2-3):343-353.
    Philosophers of biology have been absorbed by the problem of defining evolutionary fitness since Darwin made it central to biological explanation. The apparent problem is obvious. Define fitness as some biologists implicitly do, in terms of actual survival and reproduction, and the principle of natural selection turns into an empty tautology: those organisms which survive and reproduce in larger numbers, survive and reproduce in larger numbers. Accordingly, many writers have sought to provide a definition for ‘fitness’ which avoid this outcome. (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The strategy of model-based science.Peter Godfrey-Smith - 2006 - Biology and Philosophy 21 (5):725-740.
    Download  
     
    Export citation  
     
    Bookmark   284 citations  
  • Hierarchies and levels of reality.Alexander Rueger & Patrick Mcgivern - 2010 - Synthese 176 (3):379-397.
    We examine some assumptions about the nature of 'levels of reality' in the light of examples drawn from physics. Three central assumptions of the standard view of such levels (for instance, Oppenheim and Putnam 1958) are (i) that levels are populated by entities of varying complexity, (ii) that there is a unique hierarchy of levels, ranging from the very small to the very large, and (iii) that the inhabitants of adjacent levels are related by the parthood relation. Using examples from (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • The confusions of fitness.André Ariew & Richard C. Lewontin - 2004 - British Journal for the Philosophy of Science 55 (2):347-363.
    The central point of this essay is to demonstrate the incommensurability of ‘Darwinian fitness’ with the numeric values associated with reproductive rates used in population genetics. While sometimes both are called ‘fitness’, they are distinct concepts coming from distinct explanatory schemes. Further, we try to outline a possible answer to the following question: from the natural properties of organisms and a knowledge of their environment, can we construct an algorithm for a particular kind of organismic life-history pattern that itself will (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Levels of Selection Are Artefacts of Different Fitness Temporal Measures.Pierrick Bourrat - 2015 - Ratio 28 (1):40-50.
    In this paper I argue against the claim, recently put forward by some philosophers of biology and evolutionary biologists, that there can be two or more ontologically distinct levels of selection. I show by comparing the fitness of individuals with that of collectives of individuals in the same environment and over the same period of time – as required to decide if one or more levels of selection is acting in a population – that the selection of collectives is a (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Selection and causation.Mohan Matthen & André Ariew - 2009 - Philosophy of Science 76 (2):201-224.
    We have argued elsewhere that: (A) Natural selection is not a cause of evolution. (B) A resolution-of-forces (or vector addition) model does not provide us with a proper understanding of how natural selection combines with other evolutionary influences. These propositions have come in for criticism recently, and here we clarify and defend them. We do so within the broad framework of our own “hierarchical realization model” of how evolutionary influences combine.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Dissolving the Missing Heritability Problem.Pierrick Bourrat & Qiaoying Lu - 2017 - Philosophy of Science 84 (5):1055-1067.
    Heritability estimates obtained from genome-wide association studies are much lower than those of traditional quantitative methods. This phenomenon has been called the “missing heritability problem.” By analyzing and comparing GWAS and traditional quantitative methods, we first show that the estimates obtained from the latter involve some terms other than additive genetic variance, while the estimates from the former do not. Second, GWAS, when used to estimate heritability, do not take into account additive epigenetic factors transmitted across generations, while traditional quantitative (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A critical review of the statisticalist debate.Jun Otsuka - 2016 - Biology and Philosophy 31 (4):459-482.
    Over the past decade philosophers of biology have discussed whether evolutionary theory is a causal theory or a phenomenological study of evolution based solely on the statistical features of a population. This article reviews this controversy from three aspects, respectively concerning the assumptions, applications, and explanations of evolutionary theory, with a view to arriving at a definite conclusion in each contention. In so doing I also argue that an implicit methodological assumption shared by both sides of the debate, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Manipulation and the causes of evolution.Kenneth Reisman & Patrick Forber - 2005 - Philosophy of Science 72 (5):1113-1123.
    Evolutionary processes such as natural selection and random drift are commonly regarded as causes of population-level change. We respond to a recent challenge that drift and selection are best understood as statistical trends, not causes. Our reply appeals to manipulation as a strategy for uncovering causal relationships: if you can systematically manipulate variable A to bring about a change in variable B, then A is a cause of B. We argue that selection and drift can be systematically manipulated to produce (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • The inheritance of features.Matteo Mameli - 2005 - Biology and Philosophy 20 (2-3):365-399.
    Since the discovery of the double helical structure of DNA, the standard account of the inheritance of features has been in terms of DNA-copying and DNA-transmission. This theory is just a version of the old theory according to which the inheritance of features is explained by the transfer at conception of some developmentally privileged material from parents to offspring. This paper does the following things: (1) it explains what the inheritance of features is; (2) it explains how the DNA-centric theory (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Natural Selection: A Case for the Counterfactual Approach. [REVIEW]Philippe Huneman - 2012 - Erkenntnis 76 (2):171-194.
    This paper investigates the conception of causation required in order to make sense of natural selection as a causal explanation of changes in traits or allele frequencies. It claims that under a counterfactual account of causation, natural selection is constituted by the causal relevance of traits and alleles to the variation in traits and alleles frequencies. The “statisticalist” view of selection (Walsh, Matthen, Ariew, Lewens) has shown that natural selection is not a cause superadded to the causal interactions between individual (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Productivity, relevance and natural selection.Stuart Glennan - 2009 - Biology and Philosophy 24 (3):325-339.
    Recent papers by a number of philosophers have been concerned with the question of whether natural selection is a causal process, and if it is, whether the causes of selection are properties of individuals or properties of populations. I shall argue that much confusion in this debate arises because of a failure to distinguish between causal productivity and causal relevance. Causal productivity is a relation that holds between events connected via continuous causal processes, while causal relevance is a relationship that (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The difference between selection and drift: A reply to Millstein. [REVIEW]Robert N. Brandon - 2005 - Biology and Philosophy 20 (1):153-170.
    Millstein [Bio. Philos. 17 (2002) 33] correctly identies a serious problem with the view that natural selection and random drift are not conceptually distinct. She offers a solution to this problem purely in terms of differences between the processes of selection and drift. I show that this solution does not work, that it leaves the vast majority of real biological cases uncategorized. However, I do think there is a solution to the problem she raises, and I offer it here. My (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Natural Selection and Drift as Individual-Level Causes of Evolution.Pierrick Bourrat - 2018 - Acta Biotheoretica 66 (3):159-176.
    In this paper I critically evaluate Reisman and Forber’s :1113–1123, 2005) arguments that drift and natural selection are population-level causes of evolution based on what they call the manipulation condition. Although I agree that this condition is an important step for identifying causes for evolutionary change, it is insufficient. Following Woodward, I argue that the invariance of a relationship is another crucial parameter to take into consideration for causal explanations. Starting from Reisman and Forber’s example on drift and after having (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Levels, Time and Fitness in Evolutionary Transitions in Individuality.Pierrick Bourrat - 2015 - Philosophy, Theory, and Practice in Biology 7 (20150505).
    Yes, fitness is the central concept of evolutionary biology, but it is an elusive concept. Almost everyone who looks at it seriously comes out in a different place.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • How to Read ‘Heritability’ in the Recipe Approach to Natural Selection.Pierrick Bourrat - 2015 - British Journal for the Philosophy of Science 66 (4):883-903.
    There are two ways evolution by natural selection is conceptualized in the literature. One provides a ‘recipe’ for ENS incorporating three ingredients: variation, differences in fitness, and heritability. The other provides formal equations of evolutionary change and partitions out selection from other causes of evolutionary changes such as transmission biases or drift. When comparing the two approaches there seems to be a tension around the concept of heritability. A recent claim has been made that the recipe approach is flawed and (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Explaining Drift from a Deterministic Setting.Pierrick Bourrat - 2017 - Biological Theory 12 (1):27-38.
    Drift is often characterized in statistical terms. Yet such a purely statistical characterization is ambiguous for it can accept multiple physical interpretations. Because of this ambiguity it is important to distinguish what sorts of processes can lead to this statistical phenomenon. After presenting a physical interpretation of drift originating from the most popular interpretation of fitness, namely the propensity interpretation, I propose a different one starting from an analysis of the concept of drift made by Godfrey-Smith. Further on, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Distinguishing Natural Selection from Other Evolutionary Processes in the Evolution of Altruism.Pierrick Bourrat - 2015 - Biological Theory 10 (4):311-321.
    Altruism is one of the most studied topics in theoretical evolutionary biology. The debate surrounding the evolution of altruism has generally focused on the conditions under which altruism can evolve and whether it is better explained by kin selection or multilevel selection. This debate has occupied the forefront of the stage and left behind a number of equally important questions. One of them, which is the subject of this article, is whether the word “selection” in “kin selection” and “multilevel selection” (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations