Switch to: Citations

Add references

You must login to add references.
  1. Laver sequences for extendible and super-almost-huge cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
    Versions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses, Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On certain indestructibility of strong cardinals and a question of Hajnal.Moti Gitik & Saharon Shelah - 1989 - Archive for Mathematical Logic 28 (1):35-42.
    A model in which strongness ofκ is indestructible under κ+ -weakly closed forcing notions satisfying the Prikry condition is constructed. This is applied to solve a question of Hajnal on the number of elements of {λ δ |2 δ <λ}.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Many-times huge and superhuge cardinals.Julius B. Barbanel, Carlos A. Diprisco & It Beng Tan - 1984 - Journal of Symbolic Logic 49 (1):112-122.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Between strong and superstrong.Stewart Baldwin - 1986 - Journal of Symbolic Logic 51 (3):547-559.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Sets constructible from sequences of ultrafilters.William J. Mitchell - 1974 - Journal of Symbolic Logic 39 (1):57-66.
    In [4], Kunen used iterated ultrapowers to show that ifUis a normalκ-complete nontrivial ultrafilter on a cardinalκthenL[U], the class of sets constructive fromU, has only the ultrafilterU∩L[U] and this ultrafilter depends only onκ. In this paper we extend Kunen's methods to arbitrary sequencesUof ultrafilters and obtain generalizations of these results. In particular we answer Problem 1 of Kunen and Paris [5] which asks whether the number of ultrafilters onκcan be intermediate between 1 and 22κ. If there is a normalκ-complete ultrafilterUonκsuch (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • How large is the first strongly compact cardinal? or a study on identity crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33-57.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Fragile measurability.Joel Hamkins - 1994 - Journal of Symbolic Logic 59 (1):262-282.
    Laver [L] and others [G-S] have shown how to make the supercompactness or strongness of κ indestructible by a wide class of forcing notions. We show, alternatively, how to make these properties fragile. Specifically, we prove that it is relatively consistent that any forcing which preserves $\kappa^{<\kappa}$ and κ+, but not P(κ), destroys the measurability of κ, even if κ is initially supercompact, strong, or if I1(κ) holds. Obtained as an application of some general lifting theorems, this result is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Consistency of V = HOD with the wholeness axiom.Paul Corazza - 2000 - Archive for Mathematical Logic 39 (3):219-226.
    The Wholeness Axiom (WA) is an axiom schema that can be added to the axioms of ZFC in an extended language $\{\in,j\}$ , and that asserts the existence of a nontrivial elementary embedding $j:V\to V$ . The well-known inconsistency proofs are avoided by omitting from the schema all instances of Replacement for j-formulas. We show that the theory ZFC + V = HOD + WA is consistent relative to the existence of an $I_1$ embedding. This answers a question about the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations