Switch to: Citations

Add references

You must login to add references.
  1. Quantum Theory: A Pragmatist Approach.Richard Healey - 2012 - British Journal for the Philosophy of Science 63 (4):729-771.
    While its applications have made quantum theory arguably the most successful theory in physics, its interpretation continues to be the subject of lively debate within the community of physicists and philosophers concerned with conceptual foundations. This situation poses a problem for a pragmatist for whom meaning derives from use. While disputes about how to use quantum theory have arisen from time to time, they have typically been quickly resolved, and consensus reached, within the relevant scientific sub-community. Yet rival accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • A pragmatist view of the metaphysics of entanglement.Richard Healey - 2016 - Synthese:1-38.
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use these experimental (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A pragmatist view of the metaphysics of entanglement.Richard Healey - 2020 - Synthese 197 (10):4265-4302.
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted (though debated) metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Einstein, Incompleteness, and the Epistemic View of Quantum States.Nicholas Harrigan & Robert W. Spekkens - 2010 - Foundations of Physics 40 (2):125-157.
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Unified Foundations for Essence and Ground.Kit Fine - 2015 - Journal of the American Philosophical Association 1 (2):296-311.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Quantum Causal Models, Faithfulness, and Retrocausality.Peter W. Evans - 2018 - British Journal for the Philosophy of Science 69 (3):745-774.
    Wood and Spekkens argue that any causal model explaining the EPRB correlations and satisfying the no-signalling constraint must also violate the assumption that the model faithfully reproduces the statistical dependences and independences—a so-called ‘fine-tuning’ of the causal parameters. This includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of Näger, who argues that the central ideas of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Unitary-Only Quantum Theory Cannot Consistently Describe the Use of Itself: On the Frauchiger–Renner Paradox.R. E. Kastner - 2020 - Foundations of Physics 50 (5):441-456.
    The Frauchiger–Renner Paradox is an extension of paradoxes based on the “Problem of Measurement,” such as Schrödinger’s Cat and Wigner’s Friend. All these paradoxes stem from assuming that quantum theory has only unitary physical dynamics, and the attendant ambiguity about what counts as a ‘measurement’—i.e., the inability to account for the observation of determinate measurement outcomes from within the theory itself. This paper discusses a basic inconsistency arising in the FR scenario at a much earlier point than the derived contradiction: (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Confirmation and Reduction: a Bayesian Account.Foad Dizadji-Bahmani, Roman Frigg & Stephan Hartmann - 2011 - Synthese 179 (2):321-338.
    Various scientific theories stand in a reductive relation to each other. In a recent article, we have argued that a generalized version of the Nagel-Schaffner model (GNS) is the right account of this relation. In this article, we present a Bayesian analysis of how GNS impacts on confirmation. We formalize the relation between the reducing and the reduced theory before and after the reduction using Bayesian networks, and thereby show that, post-reduction, the two theories are confirmatory of each other. We (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Von Neumann’s impossibility proof: Mathematics in the service of rhetorics.Dennis Dieks - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 60:136-148.
    According to what has become a standard history of quantum mechanics, von Neumann in 1932 succeeded in convincing the physics community that he had proved that hidden variables were impossible as a matter of principle. Subsequently, leading proponents of the Copenhagen interpretation emphatically confirmed that von Neumann's proof showed the completeness of quantum mechanics. Then, the story continues, Bell in 1966 finally exposed the proof as seriously and obviously wrong; this rehabilitated hidden variables and made serious foundational research possible. It (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Synergetics, an Introduction: Nonequilibrium Phase Transitions and SelfOrganization in Physics, Chemistry, and Biology.H. Haken - 1978 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Mathematical Theory of Communication.Claude E. Shannon & Warren Weaver - 1949 - University of Illinois Press.
    Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored (...)
    Download  
     
    Export citation  
     
    Bookmark   644 citations  
  • Quantum Probability — Quantum Logic.Itamar Pitowsky - 2014 - Springer.
    This book compares various approaches to the interpretation of quantum mechanics, in particular those which are related to the key words "the Copenhagen interpretation", "the antirealist view", "quantum logic" and "hidden variable theory". Using the concept of "correlation" carefully analyzed in the context of classical probability and in quantum theory, the author provides a framework to compare these approaches. He also develops an extension of probability theory to construct a local hidden variable theory. The book should be of interest for (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Progress in Motor Control: A Multidisciplinary Perspective.Wolfgang Pauli, Charles P. Enz & K. V. Meyenn - 2008 - Springer.
    This ground-breaking book brings together researchers from a wide range of disciplines to discuss the control and coordination of processes involved in perceptually guided actions. The research area of motor control has become an increasingly multidisciplinary undertaking. Understanding the acquisition and performance of voluntary movements in biological and artificial systems requires the integration of knowledge from a variety of disciplines from neurophysiology to biomechanics.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Physical Basis of the Direction of Time.Heinz Dieter Zeh - 1989 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Levels: descriptive, explanatory, and ontological.Christian List - 2017
    Scientists and philosophers frequently speak about levels of description, levels of explanation, and ontological levels. This paper presents a framework for studying levels. I give a general definition of a system of levels and discuss several applications, some of which refer to descriptive or explanatory levels while others refer to ontological levels. I illustrate the usefulness of this framework by bringing it to bear on some familiar philosophical questions. Is there a hierarchy of levels, with a fundamental level at the (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantum Computation and Quantum Information.Michael A. Nielsen & Isaac L. Chuang - 2000 - Cambridge University Press.
    First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.
    Download  
     
    Export citation  
     
    Bookmark   181 citations  
  • The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Opticks.Isaac Newton - 1704 - Dover Press.
    Reproduces the text of Newton's dissertation on the nature and properties of light.
    Download  
     
    Export citation  
     
    Bookmark   130 citations  
  • Inconsistency, asymmetry, and non-locality: a philosophical investigation of classical electrodynamics.Mathias Frisch - 2005 - New York: Oxford University Press.
    Mathias Frisch provides the first sustained philosophical discussion of conceptual problems in classical particle-field theories. Part of the book focuses on the problem of a satisfactory equation of motion for charged particles interacting with electromagnetic fields. As Frisch shows, the standard equation of motion results in a mathematically inconsistent theory, yet there is no fully consistent and conceptually unproblematic alternative theory. Frisch describes in detail how the search for a fundamental equation of motion is partly driven by pragmatic considerations (like (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The View from Nowhere.Thomas Nagel - 1986 - Behaviorism 15 (1):73-82.
    Download  
     
    Export citation  
     
    Bookmark   719 citations  
  • Elementary Quantum Metaphysics.David Albert - 1996 - In J. T. Cushing, Arthur Fine & Sheldon Goldstein (eds.), Bohmian Mechanics and Quantum theory: An Appraisal. Kluwer Academic Publishers. pp. 277-284.
    Once upon a time, the twentieth-century investigations of the behaviors of sub-atomic particles were thought to have established that there can be no such thing as an objective, observer-independent, scientifically realist, empirically adequate picture of the physical world.
    Download  
     
    Export citation  
     
    Bookmark   200 citations  
  • The theory of the universal wave function.Hugh Everett Iii - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton Up. pp. 3.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Quantum mechanics.Jenann Ismael - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles — or, at least, of the measuring instruments we use to explore those behaviors — and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, and why, (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Collapse theories.Giancarlo Ghirardi - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics, with its revolutionary implications, has posed innumerable problems to philosophers of science. In particular, it has suggested reconsidering basic concepts such as the existence of a world that is, at least to some extent, independent of the observer, the possibility of getting reliable and objective knowledge about it, and the possibility of taking (under appropriate circumstances) certain properties to be objectively possessed by physical systems. It has also raised many others questions which are well known to those involved (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Thermodynamic asymmetry in time.Craig Callender - 2006 - Stanford Encyclopedia of Philosophy.
    Thermodynamics is the science that describes much of the time asymmetric behavior found in the world. This entry's first task, consequently, is to show how thermodynamics treats temporally ‘directed’ behavior. It then concentrates on the following two questions. (1) What is the origin of the thermodynamic asymmetry in time? In a world possibly governed by time symmetric laws, how should we understand the time asymmetric laws of thermodynamics? (2) Does the thermodynamic time asymmetry explain the other temporal asymmetries? Does it (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.
    Download  
     
    Export citation  
     
    Bookmark   855 citations  
  • The Structure of a Quantum World.Jill North - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 184-202.
    I argue that the fundamental space of a quantum mechanical world is the wavefunction's space. I argue for this using some very general principles that guide our inferences to the fundamental nature of a world, for any fundamental physical theory. I suggest that ordinary three-dimensional space exists in such a world, but is non-fundamental; it emerges from the fundamental space of the wavefunction.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
    Download  
     
    Export citation  
     
    Bookmark   251 citations  
  • Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
    Download  
     
    Export citation  
     
    Bookmark   764 citations  
  • An Overview of the Transactional Interpretation.John G. Cramer - 1988 - International Journal of Theoretical Physics 27 (227):1-5.
    The transactional interpretation of quantum mechanics is summarized and various points concerning the transactional interpretation and its relation to the Copenhagen interpretation are considered. Questions concerning mapping the transactional interpretation onto the Copenhagen interpretation, of advanced waves as solutions to proper wave equations, of collapse and the quantum formalism, and of the relation of quantum mechanical interpretations to experimental tests and results are discussed.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fragmenting the Wave Function.Jonathan Simon - 2018 - Oxford Studies in Metaphysics 11:123-148.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Why Black Hole Information Loss is Paradoxical.David Wallace - unknown
    I distinguish between two versions of the black hole information-loss paradox. The first arises from apparent failure of unitarity on the spacetime of a completely evaporating black hole, which appears to be non-globally-hyperbolic; this is the most commonly discussed version of the paradox in the foundational and semipopular literature, and the case for calling it `paradoxical' is less than compelling. But the second arises from a clash between a fully-statistical-mechanical interpretation of black hole evaporation and the quantum-field-theoretic description used in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Against Wavefunction Realism.David Wallace - unknown
    I argue that wavefunction realism --- the view that quantum mechanics reveals the fundamental ontology of the world to be a field on a high-dimensional spacetime, must be rejected as relying on artefacts of too-simple versions of quantum mechanics, and not conceptually well-motivated even were those too-simple versions exactly correct. I end with some brief comments on the role of spacetime in any satisfactory account of the metaphysics of extant quantum theories.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Philosophy of Cosmology.Chris Smeenk - 2013 - In Robert Batterman (ed.), Oxford Handbook of Philosophy of Physics. Oxford: Oxford University Press. pp. 607-652.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Models as a Tool for Theory Construction: Some Strategies of Preliminary Physics.Stephan Hartmann - 1995 - In William Herfel, Władysław Krajewski, Ilkka Niiniluoto & Ryszard Wójcicki (eds.), Theories and Models in Scientific Processes. Rodopi. pp. 49-67.
    Theoretical models are an important tool for many aspects of scientific activity. They are used, i.a., to structure data, to apply theories or even to construct new theories. But what exactly is a model? It turns out that there is no proper definition of the term "model" that covers all these aspects. Thus, I restrict myself here to evaluate the function of models in the research process while using "model" in the loose way physicists do. To this end, I distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Evidence for the Epistemic View of Quantum States: A Toy Theory.Robert W. Spekkens - 2007 - Physical Review A 75:032110.
    We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. Many quantum phenomena are found to have analogues within this toy theory. These include the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Discussion with Einstein on Epistemological Problems in Atomic Physics.Niels Bohr - 1949 - In Paul Arthur Schilpp (ed.), The Library of Living Philosophers, Volume 7. Albert Einstein: Philosopher-Scientist. Open Court. pp. 199--241.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Models and Stories in Hadron Physics.Stephan Hartmann - 1999 - In Margaret Morrison & Mary Morgan (eds.), Models as Mediators: Perspectives on Natural and Social Science. pp. 52--326.
    Fundamental theories are hard to come by. But even if we had them, they would be too complicated to apply. Quantum chromodynamics is a case in point. This theory is supposed to govern all strong interactions, but it is extremely hard to apply and test at energies where protons, neutrons and ions are the effective degrees of freedom. Instead, scientists typically use highly idealized models such as the MIT Bag Model or the Nambu Jona-Lasinio Model to account for phenomena in (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The Quantum Postulate and the Recent Development of Atomic Theory.Niels Bohr - 1928 - Nature 121:580--590.
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • Generalized Dicke States.Stephan Hartmann - manuscript
    Here P is the density operator of the system under consideration, and σ ± and σ 3 are the usual Pauli matrices, acting on atom i whose states are |1 > or |0 >, representing, respectively, the atom being in an excited state or in the ground state. B and C are appropriate decay constants and s has been called the pumping parameter [1]. It varies from s = 0 for pure damping to s = 1 for full laser action. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Can Interventionists be Neo-Russellians? (Forthcoming).Alexander Reutlinger - unknown
    Several proponents of the interventionist theory of causation have recently argued for a neo-Russellian account of causation. The paper discusses two strategies for interventionists to be neo-Russellians. Firstly, I argue that the open systems argument – the main argument for a neo-Russellian account advocated by interventionists – fails. Secondly, I explore and discuss an alternative for interventionists who wish to be neo-Russellians: the statistical mechanical account. Although the latter account is an attractive alternative, it is argued that interventionists are not (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2007 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma is the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Quantum mechanics as a theory of probability.Itamar Pitowsky - unknown
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory.Anthony Duncan & Michel Janssen - unknown
    In early 1927, Pascual Jordan published his version of what came to be known as the Dirac-Jordan statistical transformation theory. Later that year and partly in response to Jordan, John von Neumann published the modern Hilbert space formalism of quantum mechanics. Central to both formalisms are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of problems in the new (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Causal Modelling.Fabio Costa & Sally Shrapnel - 2016 - New Journal of Physics 18 (6):063032.
    Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces 'spooky' hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical causal modelling techniques, including (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Can Quantum-Mechanical Description of Physical Reality be Considered Complete?Niels Bohr - 1935 - Physical Review 48 (696--702):696--702.
    Download  
     
    Export citation  
     
    Bookmark   210 citations  
  • Why the Tsirelson bound?Jeffrey Bub - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 167--185.
    Download  
     
    Export citation  
     
    Bookmark   3 citations