Switch to: References

Add citations

You must login to add citations.
  1. The Role of Reconstruction in the Elucidation of Quantum Theory.Philip Goya - 2023 - In Philipp Berghofer & Harald A. Wiltsche (eds.), Phenomenology and Qbism: New Approaches to Quantum Mechanics. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Need help blurring the boundaries of your process archaeology? Don’t use agential realism. Try playing with clay.Paul Louis March - forthcoming - Phenomenology and the Cognitive Sciences:1-25.
    Over the last twenty years, archaeologists have used various process-oriented modes of enquiry to undermine the belief that humans are special. Barad (2007) developed Bohr’s indeterminist interpretation of quantum mechanics into agential realism which offers an ontological basis for distributing agency away from humans and plays a crucial role in underwriting some posthumanist archaeological agendas. But its origins in quantum physics make agential realism difficult to understand and evaluate. Despite the challenge, the first two parts of this paper are devoted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Causality and the Modeling of the Measurement Process in Quantum Theory.Christian de Ronde - 2017 - Disputatio 9 (47):657-690.
    In this paper we provide a general account of the causal models which attempt to provide a solution to the famous measurement problem of Quantum Mechanics. We will argue that—leaving aside instrumentalism which restricts the physical meaning of QM to the algorithmic prediction of measurement outcomes—the many interpretations which can be found in the literature can be distinguished through the way they model the measurement process, either in terms of the efficient cause or in terms of the final cause. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Bohr's way to defining complementarity.Alberto De Gregorio - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45:72-82.
    We go through Bohr's talk about complementary features of quantum theory at the Volta Conference in September 1927, by collating a manuscript that Bohr wrote in Como with the unpublished stenographic report of his talk. We conclude – also with the help of some unpublished letters – that Bohr gave a very concise speech in September. The formulation of his ideas became fully developed only between the fifth Solvay Conference, in Brussels in October, and early 1928. The unpublished stenographic reports (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bohr's way to defining complementarity.Alberto De Gregorio - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45:72-82.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Kantian framework of complementarity.Michael Cuffaro - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (4):309-317.
    A growing number of commentators have, in recent years, noted the important affinities in the views of Immanuel Kant and Niels Bohr. While these commentators are correct, the picture they present of the connections between Bohr and Kant is painted in broad strokes; it is open to the criticism that these affinities are merely superficial. In this essay, I provide a closer, structural, analysis of both Bohr's and Kant's views that makes these connections more explicit. In particular, I demonstrate the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Free Will, Subjectivity and the Physics of the Nervous System.Mauro Ceroni & Giovanni Maria Prosperi - 2018 - Open Journal of Philosophy 8 (3):317-341.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Space-Time in Quantum Theory.H. Capellmann - 2021 - Foundations of Physics 51 (2):1-34.
    Quantum Theory, similar to Relativity Theory, requires a new concept of space-time, imposed by a universal constant. While velocity of lightcnot being infinite calls for a redefinition of space-time on large and cosmological scales, quantization of action in terms of a finite, i.e. non vanishing, universal constanthrequires a redefinition of space-time on very small scales. Most importantly, the classical notion of “time”, as one common continuous time variable and nature evolving continuously “in time”, has to be replaced by an infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indeterminacy and the limits of classical concepts: The transformation of Heisenberg's thought.Kristian Camilleri - 2007 - Perspectives on Science 15 (2):178-201.
    : This paper examines the transformation which occurs in Heisenberg's understanding of indeterminacy in quantum mechanics between 1926 and 1928. After his initial but unsuccessful attempt to construct new quantum concepts of space and time, in 1927 Heisenberg presented an operational definition of concepts such as 'position' and 'velocity'. Yet, after discussions with Bohr, he came to the realisation that classical concepts such as position and momentum are indispensable in quantum mechanics in spite of their limited applicability. This transformation in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Heisenberg and the wave–particle duality.Kristian Camilleri - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):298-315.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Heisenberg and the transformation of Kantian philosophy.Kristian Camilleri - 2005 - International Studies in the Philosophy of Science 19 (3):271 – 287.
    In this paper, I argue that Heisenberg's mature philosophy of quantum mechanics must be understood in the context of his epistemological project to reinterpret and redefine Kant's notion of the a priori. After discussions with Weizsäcker and Hermann in Leipzig in the 1930s, Heisenberg attempted to ground his interpretation of quantum mechanics on what might be termed a 'practical' transformation of Kantian philosophy. Taking as his starting point, Bohr's doctrine of the indispensability of classical concepts, Heisenberg argued that concepts such (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Constructing the myth of the copenhagen interpretation.Kristian Camilleri - 2009 - Perspectives on Science 17 (1):pp. 26-57.
    According to the standard view, the so-called ‘Copenhagen interpretation’ of quantum mechanics originated in discussions between Bohr and Heisenberg in 1927, and was defended by Bohr in his classic debate with Einstein. Yet recent scholarship has shown Bohr’s views were never widely accepted, let alone properly understood, by his contemporaries, many of whom held divergent views of the ‘Copenhagen orthodoxy’. This paper examines how the ‘myth of the Copenhagen interpretation’ was constructed by situating it in the context of Soviet Marxist (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Bohr, Heisenberg and the divergent views of complementarity.Kristian Camilleri - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):514-528.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A history of entanglement: Decoherence and the interpretation problem.Kristian Camilleri - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (4):290-302.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The determination of the past and the future of a physical system in quantum mechanics.Paul Busch & Pekka J. Lahti - 1989 - Foundations of Physics 19 (6):633-678.
    The determination of the past and the future of a physical system are complementary aims of measurements. An optimal determination of the past of a system can be achieved by an informationally complete set of physical quantities. Such a set is always strongly noncommutative. An optimal determination of the future of a physical system can be obtained by a Boolean complete set of quantities. The two aims can be reconciled to a reasonable degree with using unsharp measurements.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A functional analysis of scientific theories.Harold I. Brown - 1979 - Zeitschrift Für Allgemeine Wissenschaftstheorie 10 (1):119-140.
    Scientific theories are analyzed in terms of the role that they play in science rather than in terms of their logical structure. It is maintained that theories: provide descriptions of the fundamental features of their domains; on the basis of 1, explain non-fundamental features of their domains; provide a guide for further research in their domains. Any set of propositions that carries out these functions with respect to some domain counts as a theory. This view of theories is developed and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wave-Particle Duality and the Objectiveness of “True” and “False”.Arkady Bolotin - 2021 - Foundations of Physics 51 (4):1-27.
    The traditional analysis of the basic version of the double-slit experiment leads to the conclusion that wave-particle duality is a fundamental fact of nature. However, such a conclusion means to imply that we are not only required to have two contradictory pictures of reality but also compelled to abandon the objectiveness of the truth values, “true” and “false”. Yet, even if we could accept wave-like behavior of quantum particles as the best explanation for the build-up of an interference pattern in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Niels Bohr’s Generalization of Classical Mechanics.Peter Bokulich - 2005 - Foundations of Physics 35 (3):347-371.
    We clarify Bohr’s interpretation of quantum mechanics by demonstrating the central role played by his thesis that quantum theory is a rational generalization of classical mechanics. This thesis is essential for an adequate understanding of his insistence on the indispensability of classical concepts, his account of how the quantum formalism gets its meaning, and his belief that hidden variable interpretations are impossible.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Complementarity, wave-particle duality, and domains of applicability.Peter Bokulich - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59:136-142.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum reality: A pragmaticized neo-Kantian approach.Florian J. Boge - 2021 - Studies in History and Philosophy of Science Part A 87 (C):101-113.
    Despite remarkable efforts, it remains notoriously difficult to equip quantum theory with a coherent ontology. Hence, Healey (2017, 12) has recently suggested that ‘‘quantum theory has no physical ontology and states no facts about physical objects or events’’, and Fuchs et al. (2014, 752) similarly hold that ‘‘quantum mechanics itself does not deal directly with the objective world’’. While intriguing, these positions either raise the question of how talk of ‘physical reality’ can even remain meaningful, or they must ultimately embrace (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Can Epistemology as a Philosophical Discipline Develop into a Science?Bohuslaw Blažek - 1979 - Dialectica 33 (2):87-108.
    SummaryThe present paper attemps to demonstrate an analogy between the metascientific, i. e. epistemological, concepts of Niels Bohr and Jean Piaget. To make such a comparison possible a general model of an open circular process of acquiring knowledge is proposed including the following stages: generalization of a successful theory, origin of implicit assumptions, counter‐examples, disclosure of implicit and tacit assumptions ; attempts to eliminate counter‐examples, cul‐de‐sac, emergence of competing theories, explication of fundamental notions, distinction between narrower and broader theories. Parallelly, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Critique of Wave-Particle Duality of Single-Photons.Varun S. Bhatta - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (4):501-521.
    A prominent way through which wave-particle duality has been ascribed to photons is by illustrating their “wave-like” behaviour in the Mach-Zehnder interferometer and “particle-like” behaviour in the anti-correlation experiment. This duality has been formulated in two ways. Some have based the claim on the complementarity principle. This formulation, however, has already been shown to be problematic. Others have made a much simpler duality claim by considering that single-photons are analogous to waves and particles in the above experiments. I criticise this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘In the Light of Leibniz and Lucretius’: An Encounter between Deleuze and New Materialism.Hanjo Berressem - 2021 - Deleuze and Guattari Studies 15 (4):497-522.
    While most new materialists, including Thomas Nail, tend to distance themselves from Deleuze, this essay reads the encounter of Nail's ‘process materialism’ and Deleuzian philosophy as productive rather than contentious. After tracing the affinities of their notions of continuity and discontinuity by way of Deleuze's The Fold: Leibniz and the Baroque and Nail's Lucretius I: An Ontology of Motion and Being and Motion, the essay considers Nail's unfolding of Lucretius’ luminous philosophy in relation to Deleuze's reading of Lucretius from within (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The birth of Bohr's complementarity: The context and the dialogues.Mara Beller - 1991 - Studies in History and Philosophy of Science Part A 23 (1):147-180.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The conceptual and the anecdotal history of quantum mechanics.Mara Beller - 1996 - Foundations of Physics 26 (4):545-557.
    The aim of this paper is to combine the intellectual and the psychosocial aspects. blurring the distinction between the conceptual and the anecdotal history of quantum mechanics. The full realization of the importance of such “anecdotal” factors leads to the revision of our understanding of the conceptual development itself. The paper concludes with the suggestion that a major part of numerous inconsistencies in the Copenhagen interpretation of quantum physics are of a psychosocial origin.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Chaos, quantization, and the correspondence principle.Robert W. Batterman - 1991 - Synthese 89 (2):189 - 227.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the Physical Reality of Quantum Waves.Gennaro Auletta & Gino Tarozzi - 2004 - Foundations of Physics 34 (11):1675-1694.
    The main interpretations of the quantum-mechanical wave function are presented emphasizing how they can be divided into two ensembles: The ones that deny and the other ones that attribute a form of reality to quantum waves. It is also shown why these waves cannot be classical and must be submitted to the restriction of the complementarity principle. Applying the concept of smooth complementarity, it is shown that there can be no reason to attribute reality only to the events and not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a process-based approach to consciousness and collapse in quantum mechanics.Raoni Arroyo, Lauro de Matos Nunes Filho & Frederik Moreira Dos Santos - 2024 - Manuscrito 47 (1):2023-0047.
    According to a particular interpretation of quantum mechanics, the causal role of human consciousness in the measuring process is called upon to solve a foundational problem called the “measurement problem.” Traditionally, this interpretation is tied up with the metaphysics of substance dualism. As such, this interpretation of quantum mechanics inherits the dualist’s mind-body problem. Our working hypothesis is that a process-based approach to the consciousness causes collapse interpretation (CCCI) ---leaning on Whitehead’s solution to the mind-body problem--- offers a better metaphysical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Evolution of Philosophical Concepts of the Origins of Universe and Life.Cristina de Souza Agostini, Isabel Porto da Silveira & Cauê Cardoso Polla - 2021 - Archai: Revista de Estudos Sobre as Origens Do Pensamento Ocidental 31.
    In order to demonstrate the great importance of Philosophy in the elaboration of current scientific theories, a parallel was drawn between concepts of pre-Socratic Philosophy and current modern theories. Thus, throughout this essay, the convergences between some elaborations developed by philosophers and their reinterpretation from a scientific point of view, supported by the scientific method and the present technological apparatuses, were exposed. In this sense, having as its core the reflection about the atomic theory of Leucippus and Democritus, we investigate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Paradox in Wave-Particle Duality.Shahriar S. Afshar, Eduardo Flores, Keith F. McDonald & Ernst Knoesel - 2007 - Foundations of Physics 37 (2):295-305.
    We report on the simultaneous determination of complementary wave and particle aspects of light in a double-slit type “welcher-weg” experiment beyond the limitations set by Bohr’s Principle of Complementarity. Applying classical logic, we verify the presence of sharp interference in the single photon regime, while reliably maintaining the information about the particular pinhole through which each individual photon had passed. This experiment poses interesting questions on the validity of Complementarity in cases where measurements techniques that avoid Heisenberg’s uncertainty principle and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Quantum theory and human perception of the macro-world.Diederik Aerts - 2014 - Frontiers in Psychology 5.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. [REVIEW]Diederik Aerts - 2009 - Foundations of Science 14 (4):361-411.
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Bringing physics to bear on the phenomenon of life: the divergent positions of Bohr, Delbrück, and Schrödinger.Andrew T. Domondon - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (3):433-458.
    The received view on the contributions of the physics community to the birth of molecular biology tends to present the physics community as sharing a basic level consensus on how physics should be brought to bear on biology. I argue, however, that a close examination of the views of three leading physicists involved in the birth of molecular biology, Bohr, Delbrück, and Schrödinger, suggests that there existed fundamental disagreements on how physics should be employed to solve problems in biology even (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Arrangements.Gregg Jaeger & Anton Zeilinger - 2021 - Cham, Switzerland: Springer Nature.
    This book presents a collection of novel contributions and reviews by renowned researchers in the foundations of quantum physics, quantum optics, and neutron physics. It is published in honor of Michael Horne, whose exceptionally clear and groundbreaking work in the foundations of quantum mechanics and interferometry, both of photons and of neutrons, has provided penetrating insight into the implications of modern physics for our understanding of the physical world. He is perhaps best known for the Clauser-Horne-Shimony-Holt (CHSH) inequality. This collection (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Perspectival objectivity.Peter W. Evans - 2020 - European Journal for Philosophy of Science 10 (2):1-21.
    Building on self-professed perspectival approaches to both scientific knowledge and causation, I explore the potentially radical suggestion that perspectivalism can be extended to account for a type of objectivity in science. Motivated by recent claims from quantum foundations that quantum mechanics must admit the possibility of observer-dependent facts, I develop the notion of ‘perspectival objectivity’, and suggest that an easier pill to swallow, philosophically speaking, than observer-dependency is perspective-dependency, allowing for a notion of observer-independence indexed to an agent perspective. Working (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reappraising Braid after a Quantum Theory of Time.Conor McKeown - 2019 - Philosophies 4 (4):55.
    _Braid_’s (Jonathan Blow, 2008) time-bending gameplay allows players to engage with a virtual world in which a player’s perceived ‘past’ can be endlessly rewritten, duration extended, and the ludic arrow of time can be reversed. One could assume that as mistakes can simply be undone, in-game actions cease to have consequences. However, the climax of the game’s narrative arc disrupts our assumption of control over these mechanics and encourages players to reflect on the possible moral implications of actions, both in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sciences of Observation.Chris Fields - 2018 - Philosophies 3 (4):29.
    Multiple sciences have converged, in the past two decades, on a hitherto mostly unremarked question: what is observation? Here, I examine this evolution, focusing on three sciences: physics, especially quantum information theory, developmental biology, especially its molecular and “evo-devo” branches, and cognitive science, especially perceptual psychology and robotics. I trace the history of this question to the late 19th century, and through the conceptual revolutions of the 20th century. I show how the increasing interdisciplinary focus on the process of extracting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Schrödinger Cats and Quantum Complementarity.Lorenzo Maccone - 2024 - Foundations of Physics 54 (1):1-10.
    Complementarity tells us we cannot know precisely the values of all the properties of a quantum object at the same time: the precise determination of one property implies that the value of some other (complementary) property is undefined. E.g. the precise knowledge of the position of a particle implies that its momentum is undefined. Here we show that a Schrödinger cat has a well defined value of a property that is complementary to its “being dead or alive” property. Then, thanks (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Everett Interpretation: Structure.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the first of two reviews of the Everett interpretation, and focuses on structure, with particular attention to the role of decoherence theory. Written in terms of the quantum histories formalism, decoherence theory just is the theory of branching structure, in Everett's sense.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Niels Bohr on the wave function and the classical/quantum divide.Henrik Zinkernagel - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:9-19.
    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr’s interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr’s view on the classical/quantum divide, arguing that the relation (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A beautiful sea: P. A. M. Dirac's epistemology and ontology of the vacuum.Aaron Sidney Wright - 2016 - Annals of Science 73 (3):225-256.
    This paper charts P.A.M. Dirac’s development of his theory of the electron, and its radical picture of empty space as an almost-full plenum. Dirac’s Quantum Electrodynamics famously accomplished more than the unification of special relativity and quantum mechanics. It also accounted for the ‘duplexity phenomena’ of spectral line splitting that we now attribute to electron spin. But the extra mathematical terms that allowed for spin were not alone, and this paper charts Dirac’s struggle to ignore or account for them as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uncertainty from Heisenberg to Today.Reinhard F. Werner & Terry Farrelly - 2019 - Foundations of Physics 49 (6):460-491.
    We explore the different meanings of “quantum uncertainty” contained in Heisenberg’s seminal paper from 1927, and also some of the precise definitions that were developed later. We recount the controversy about “Anschaulichkeit”, visualizability of the theory, which Heisenberg claims to resolve. Moreover, we consider Heisenberg’s programme of operational analysis of concepts, in which he sees himself as following Einstein. Heisenberg’s work is marked by the tensions between semiclassical arguments and the emerging modern quantum theory, between intuition and rigour, and between (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Potential of Using Quantum Theory to Build Models of Cognition.Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos - 2013 - Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Reintroducing the Concept of Complementarity into Psychology.Zheng Wang & Jerome Busemeyer - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The role of subjectivity: Response to Noriyuki Inoue.Joan Walton - 2016 - International Journal for Transformative Research 3 (1).
    Download  
     
    Export citation  
     
    Bookmark  
  • Is quantum indeterminism real? Theological implications.Claudia E. Vanney - 2015 - Zygon 50 (3):736-756.
    Quantum mechanics studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uncertainty principle and uncertainty relations.J. B. M. Uffink & Jan Hilgevoord - 1985 - Foundations of Physics 15 (9):925-944.
    It is generally believed that the uncertainty relation Δq Δp≥1/2ħ, where Δq and Δp are standard deviations, is the precise mathematical expression of the uncertainty principle for position and momentum in quantum mechanics. We show that actually it is not possible to derive from this relation two central claims of the uncertainty principle, namely, the impossibility of an arbitrarily sharp specification of both position and momentum (as in the single-slit diffraction experiment), and the impossibility of the determination of the path (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Quantum bayesianism: A study.Christopher Gordon Timpson - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):579-609.
    The Bayesian approach to quantum mechanics of Caves, Fuchs and Schack is presented. Its conjunction of realism about physics along with anti-realism about much of the structure of quantum theory is elaborated; and the position defended from common objections: that it is solipsist; that it is too instrumentalist; that it cannot deal with Wigner's friend scenarios. Three more substantive problems are raised: Can a reasonable ontology be found for the approach? Can it account for explanation in quantum theory? Are subjective (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Uncertainty in Bohr's response to the Heisenberg microscope.Scott Tanona - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):483-507.
    Download  
     
    Export citation  
     
    Bookmark   3 citations