Switch to: Citations

Add references

You must login to add references.
  1. Interpreting the Modal Kochen–Specker theorem: Possibility and many worlds in quantum mechanics.Christian de Ronde, Hector Freytes & Graciela Domenech - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45:11-18.
    In this paper we attempt to physically interpret the Modal Kochen–Specker theorem. In order to do so, we analyze the features of the possible properties of quantum systems arising from the elements in an orthomodular lattice and distinguish the use of “possibility” in the classical and quantum formalisms. Taking into account the modal and many worlds non-collapse interpretation of the projection postulate, we discuss how the MKS theorem rules the constraints to actualization, and thus, the relation between actual and possible (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Causality and the Modeling of the Measurement Process in Quantum Theory.Christian de Ronde - 2017 - Disputatio 9 (47):657-690.
    In this paper we provide a general account of the causal models which attempt to provide a solution to the famous measurement problem of Quantum Mechanics. We will argue that—leaving aside instrumentalism which restricts the physical meaning of QM to the algorithmic prediction of measurement outcomes—the many interpretations which can be found in the literature can be distinguished through the way they model the measurement process, either in terms of the efficient cause or in terms of the final cause. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Many worlds: decoherent or incoherent?Karim P. Y. Thébault & Richard Dawid - 2015 - Synthese 192 (5):1559-1580.
    We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Quantum Theory is an Information Theory: The Operational Framework and the Axioms.Giacomo M. D’Ariano & Paolo Perinotti - 2016 - Foundations of Physics 46 (3):269-281.
    In this paper we review the general framework of operational probabilistic theories, along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Paraconsistent Logic of Quantum Superpositions.Newton C. A. da Costa & Christian de Ronde - 2013 - Foundations of Physics 43 (7):845-858.
    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics.Alisa Bokulich - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):377-396.
    This paper describes a long-standing, though little-known, debate between Paul Dirac and Werner Heisenberg over the nature of scientific methodology, theory change, and intertheoretic relations. Following Heisenberg’s terminology, their disagreements can be summarized as a debate over whether the classical and quantum theories are “open” or “closed.” A close examination of this debate sheds new light on the philosophical views of two of the great founders of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   187 citations  
  • Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. [REVIEW]Diederik Aerts - 2009 - Foundations of Science 14 (4):361-411.
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words.Diederik Aerts & Lester Beltran - 2020 - Foundations of Science 25 (3):755-802.
    We model a piece of text of human language telling a story by means of the quantum structure describing a Bose gas in a state close to a Bose–Einstein condensate near absolute zero temperature. For this we introduce energy levels for the words used in the story and we also introduce the new notion of ‘cogniton’ as the quantum of human thought. Words are then cognitons in different energy states as it is the case for photons in different energy states, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Applications of quantum statistics in psychological studies of decision processes.Diedrik Aerts & Sven Aerts - 1995 - Foundations of Science 1 (1):85-97.
    We present a new approach to the old problem of how to incorporate the role of the observer in statistics. We show classical probability theory to be inadequate for this task and take refuge in the epsilon-model, which is the only model known to us caapble of handling situations between quantum and classical statistics. An example is worked out and some problems are discussed as to the new viewpoint that emanates from our approach.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • A Potentiality and Conceptuality Interpretation of Quantum Physics.Diederik Aerts - 2010 - Philosophica 83 (1).
    We elaborate on a new interpretation of quantum mechanics which we introduced recently. The main hypothesis of this new interpretation is that quantum particles are entities interacting with matter conceptually, which means that pieces of matter function as interfaces for the conceptual content carried by the quantum particles. We explain how our interpretation was inspired by our earlier analysis of non-locality as non-spatiality and a specific interpretation of quantum potentiality, which we illustrate by means of the example of two interconnected (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Development of concepts in the history of quantum theory.Werner Heisenberg - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 264--275.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The principles of quantum mechanics.Paul Adrien Maurice Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   261 citations  
  • Concepts of space.Max Jammer - 1954 - Cambridge, Mass.,: Harvard University Press.
    Historical surveys of the concept of space considers Judeo-Christian ideas about space, Newton's concept of absolute space, space from 18th century to the ...
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Physics and beyond: encounters and conversations.Werner Heisenberg - 1971 - London: G. Allen & Unwin.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The Scientific Image by Bas C. van Fraassen. [REVIEW]Michael Friedman - 1982 - Journal of Philosophy 79 (5):274-283.
    Download  
     
    Export citation  
     
    Bookmark   919 citations  
  • The Transactional Interpretation of Quantum Mechanics. [REVIEW]Chris Fields - unknown
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • ‘Einselection’ of pointer observables: The new H-theorem?Ruth E. Kastner - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):56-58.
    In attempting to derive irreversible macroscopic thermodynamics from reversible microscopic dynamics, Boltzmann inadvertently smuggled in a premise that assumed the very irreversibility he was trying to prove: ‘molecular chaos.’ The program of ‘Einselection’ within Everettian approaches faces a similar ‘Loschmidt’s Paradox’: the universe, according to the Everettian picture, is a closed system obeying only unitary dynamics, and it therefore contains no distinguishable environmental subsystems with the necessary ‘phase randomness’ to effect einselection of a pointer observable. The theoretically unjustified assumption of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Everettian quantum mechanics and physical probability: Against the principle of “State Supervenience”.Lina Jansson - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:45-53.
    Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace calls state supervenience. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Concepts of Space: The History of Theories of Space in Physics. Max Jammer. Foreword by Albert Einstein. Cambridge: Harvard University Press, 1954. Pp. xvi, 196. $3.75.Edward Rosen - 1956 - Philosophy of Science 23 (2):160-162.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Concepts of space: the history of theories of space in physics.Max Jammer - 1969 - New York: Dover Publications.
    Newly updated study surveys concept of space from standpoint of historical development. Space in antiquity, Judeo-Christian ideas about space, Newton’s concept of absolute space, space from 18th century to present. Extensive new chapter (6) reviews changes in philosophy of space since publication of second edition (1969). Numerous original quotations and bibliographical references. "...admirably compact and swiftly paced style."—Philosophy of Science. Foreword by Albert Einstein. Bibliography.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Was Einstein Really a Realist?Don Howard - 1993 - Perspectives on Science 1 (2):204-251.
    It is widely believed that the development of the general theory of relativity coincided with a shift in Einstein’s philosophy of science from a kind of Machian positivism to a form of scientific realism. This article criticizes that view, arguing that a kind of realism was present from the start but that Einstein was skeptical all along about some of the bolder metaphysical and epistemological claims made on behalf of what we now would call scientific realism. If we read Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Hilbert space quantum mechanics is noncontextual.Robert B. Griffiths - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):174-181.
    It is shown that quantum mechanics is noncontextual if quantum properties are represented by subspaces of the quantum Hilbert space rather than by hidden variables. In particular, a measurement using an appropriately constructed apparatus can be shown to reveal the value of an observable A possessed by the measured system before the measurement took place, whatever other compatible observable B may be measured at the same time.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum Mechanics, Chance and Modality.Dennis Dieks - 2010 - Philosophica 83 (1):117-137.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show that the Born (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show that the Born (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Many-Worlds Interpretation of Quantum Mechanics.B. DeWitt & N. Graham (eds.) - 1973 - Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   211 citations  
  • The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   264 citations  
  • Consistent Quantum Theory.Robert B. Griffiths - 2002 - Cambridge UP.
    A clear and accessible presentation of quantum theory, suitable for researchers yet accessible to graduates.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Philosophy of Science: The Central Issues.Martin Curd & Jan A. Cover (eds.) - 1998 - Norton.
    Contents Preface General Introduction 1 | Science and Pseudoscience Introduction Karl Popper, Science: Conjectures and Refutations Thomas S. Kuhn, Logic of Discovery or Psychology of Research? Imre Lakatos, Science and Pseudoscience Paul R. Thagard, Why Astrology Is a Pseudoscience Michael Ruse, Creation-Science Is Not Science Larry Laudan, Commentary: Science at the Bar---Causes for Concern Commentary 2 | Rationality, Objectivity, and Values in Science Introduction Thomas S. Kuhn, The Nature and Necessity of Scientific Revolutions Thomas S. Kuhn, Objectivity, Value Judgment, and (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Properties and dispositions: Some metaphysical remarks on quantum ontology.Mauro Dorato - 2006 - American Institute of Physics (1):139-157.
    After some suggestions about how to clarify the confused metaphysical distinctions between dispositional and non-dispositional or categorical properties, I review some of the main interpretations of QM in order to show that – with the relevant exception of Bohm’s minimalist interpretation – quantum ontology is irreducibly dispositional. Such an irreducible character of dispositions must be explained differently in different interpretations, but the reducibility of the contextual properties in the case of Bohmian mechanics is guaranteed by the fact that the positions (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Modality, Potentiality and Contradiction in Quantum Mechanics.Christian de Ronde - unknown
    In [9], Newton da Costa together with the author of this paper argued in favor of the possibility to consider quantum superpositions in terms of a paraconsistent approach. We claimed that, even though most interpretations of quantum mechanics attempt to escape contradictions, there are many hints that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause [1, 2, 3] have raised several arguments against this approach and claimed that —taking into account (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Probabilistic Knowledge as Objective Knowledge in Quantum Mechanics: Potential Powers Instead of Actual Properties.Christian de Ronde - unknown
    In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Representational Realism, Closed Theories and the Quantum to Classical Limit.Christian de Ronde - unknown
    In this paper we discuss the representational realist stance as a pluralist ontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two metaphysical presuppositions —accepted in the present as dogmas that all interpretations must follow. We will (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Hilbert Space Quantum Mechanics is Contextual.Christian de Ronde - unknown
    In a recent paper Griffiths [38] has argued, based on the consistent histories interpretation, that Hilbert space quantum mechanics is noncontextual. According to Griffiths the problem of contextuality disappears if the apparatus is “designed and operated by a competent experimentalist” and we accept the Single Framework Rule. We will argue from a representational realist stance that the conclusion is incorrect due to the misleading understanding provided by Griffiths to the meaning of quantum contextuality and its relation to physical reality and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
    Download  
     
    Export citation  
     
    Bookmark   747 citations  
  • Potentiality and Contradiction in Quantum Mechanics.Jonas R. B. Arenhart & Decio Krause - unknown
    Following J.-Y.Béziau in his pioneer work on non-standard interpretations of the traditional square of opposition, we have applied the abstract structure of the square to study the relation of opposition between states in superposition in orthodox quantum mechanics in [1]. Our conclusion was that such states are contraries, contradicting previous analyzes that have led to different results, such as those claiming that those states represent contradictory properties. In this chapter we bring the issue once again into the center of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Contradiction, Quantum Mechanics, and the Square of Opposition.Jonas R. B. Arenhart & Décio Krause - unknown
    We discuss the idea that superpositions in quantum mechanics may involve contradictions or contradictory properties. A state of superposition such as the one comprised in the famous Schrödinger’s cat, for instance, is sometimes said to attribute contradictory properties to the cat: being dead and alive at the same time. If that were the case, we would be facing a revolution in logic and science, since we would have one of our greatest scientific achievements showing that real contradictions exist.We analyze that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What does it feel like to be in a quantum superposition?Shan Gao - unknown
    We suggest a new answer to this intriguing question and argue that the answer may have implications for the solutions to the measurement problem. The main basis of our analysis is the doctrine of psychophysical supervenience. First of all, based on this doctrine, we argue that an observer in a quantum superposition or a quantum observer has a definite conscious experience, which is neither disjunctive nor illusive. The inconsistency of this result with the bare theory is further analyzed, and it (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Revisiting the Applicability of Metaphysical Identity in Quantum Mechanics.Newton C. A. da Costa & Christian de Ronde - unknown
    We discuss the hypothesis that the debate about the interpretation of the orthodox formalism of quantum mechanics might have been misguided right from the start by a biased metaphysical interpretation of the formalism and its inner mathematical relations. In particular, we focus on the orthodox interpretation of the congruence relation, '=', which relates equivalent classes of different mathematical representations of a vector in Hilbert space, in terms of metaphysical identity. We will argue that this seemingly "common sense" interpretation, at the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Principles of Quantum Mechanics.P. A. M. Dirac - 1936 - Revue de Métaphysique et de Morale 43 (2):5-5.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   456 citations  
  • The Theory of the Universal Wavefunction.Hugh Everett - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   71 citations