Switch to: Citations

Add references

You must login to add references.
  1. Functional interpretation of Aczel's constructive set theory.Wolfgang Burr - 2000 - Annals of Pure and Applied Logic 104 (1-3):31-73.
    In the present paper we give a functional interpretation of Aczel's constructive set theories CZF − and CZF in systems T ∈ and T ∈ + of constructive set functionals of finite types. This interpretation is obtained by a translation × , a refinement of the ∧ -translation introduced by Diller and Nahm 49–66) which again is an extension of Gödel's Dialectica translation. The interpretation theorem gives characterizations of the definable set functions of CZF − and CZF in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Diller-Nahm-style functional interpretation of $\hbox{\sf KP} \omega$.Wolfgang Burr - 2000 - Archive for Mathematical Logic 39 (8):599-604.
    The Dialectica-style functional interpretation of Kripke-Platek set theory with infinity ( $\hbox{\sf KP} \omega$ ) given in [1] uses a choice functional (which is not a definable set function of ( $hbox{\sf KP} \omega$ ). By means of a Diller-Nahm-style interpretation (cf. [4]) it is possible to eliminate the choice functional and give an interpretation by set functionals primitive recursive in $x\mapsto\omega$ . This yields the following characterization: The class of $\Sigma$ -definable set functions of $\hbox{\sf KP} \omega$ coincides with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematical logic.Joseph Robert Shoenfield - 1967 - Reading, Mass.,: Addison-Wesley.
    8.3 The consistency proof -- 8.4 Applications of the consistency proof -- 8.5 Second-order arithmetic -- Problems -- Chapter 9: Set Theory -- 9.1 Axioms for sets -- 9.2 Development of set theory -- 9.3 Ordinals -- 9.4 Cardinals -- 9.5 Interpretations of set theory -- 9.6 Constructible sets -- 9.7 The axiom of constructibility -- 9.8 Forcing -- 9.9 The independence proofs -- 9.10 Large cardinals -- Problems -- Appendix The Word Problem -- Index.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • Constructivism in Mathematics: An Introduction.A. S. Troelstra & Dirk Van Dalen - 1988 - Amsterdam: North Holland. Edited by D. van Dalen.
    The present volume is intended as an all-round introduction to constructivism. Here constructivism is to be understood in the wide sense, and covers in particular Brouwer's intuitionism, Bishop's constructivism and A.A. Markov's constructive recursive mathematics. The ending "-ism" has ideological overtones: "constructive mathematics is the (only) right mathematics"; we hasten, however, to declare that we do not subscribe to this ideology, and that we do not intend to present our material on such a basis.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen.Justus Diller - 1974 - Archive for Mathematical Logic 16 (1-2):49-66.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Functional interpretation and the existence property.Klaus Frovin Jørgensen - 2004 - Mathematical Logic Quarterly 50 (6):573-576.
    It is shown that functional interpretation can be used to show the existence property of intuitionistic number theory. On the basis of truth variants a comparison is then made between realisability and functional interpretation showing a structural difference between the two.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretation of analysis by means of constructive functionals of finite types.Georg Kreisel - 1959 - In A. Heyting (ed.), Constructivity in mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 101--128.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • A characterization of the $\Sigma_1$ -definable functions of $KP\omega + $.Wolfgang Burr & Volker Hartung - 1998 - Archive for Mathematical Logic 37 (3):199-214.
    The subject of this paper is a characterization of the $\Sigma_1$ -definable set functions of Kripke-Platek set theory with infinity and a uniform version of axiom of choice: $KP\omega+(uniform\;AC)$ . This class of functions is shown to coincide with the collection of set functionals of type 1 primitive recursive in a given choice functional and $x\mapsto\omega$ . This goal is achieved by a Gödel Dialectica-style functional interpretation of $KP\omega+(uniform\;AC)$ and a computability proof for the involved functionals.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Constructive set theory.John Myhill - 1975 - Journal of Symbolic Logic 40 (3):347-382.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Functional interpretation and the existence property.Klaus Jørgensen - 2004 - Mathematical Logic Quarterly 50 (6):573-576.
    It is shown that functional interpretation can be used to show the existence property of intuitionistic number theory. On the basis of truth variants a comparison is then made between realisability and functional interpretation showing a structural difference between the two.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • (1 other version)On the interpretation of intuitionistic number theory.S. C. Kleene - 1945 - Journal of Symbolic Logic 10 (4):109-124.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Concepts and aims of functional interpretations: Towards a functional interpretation of constructive set theory.Wolfgang Burr - 2002 - Synthese 133 (1-2):257 - 274.
    The aim of this article is to give an introduction to functional interpretations of set theory given by the authorin Burr (2000a). The first part starts with some general remarks on Gödel's functional interpretation with a focus on aspects related to problems that arise in the context of set theory. The second part gives an insight in the techniques needed to perform a functional interpretation of systems of set theory. However, the first part of this article is not intended to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpretations of Heyting's arithmetic—An analysis by means of a language with set symbols.Martin Stein - 1980 - Annals of Mathematical Logic 19 (1):1-31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretationen der Heyting-Arithmetik endlicher Typen.Martin Stein - 1978 - Archive for Mathematical Logic 19 (1):175-189.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hybrids of the ×-translation for CZF ω.Dominic Schulte - 2008 - Journal of Applied Logic 6 (3):443-458.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Simultane Rekursionen in der Theorie der Funktionale endlicher Typen.Justus Diller & Kurt Schütte - 1971 - Archive for Mathematical Logic 14 (1-2):69-74.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical problems of functional interpretations.Justus Diller - 2002 - Annals of Pure and Applied Logic 114 (1-3):27-42.
    Gödel interpreted Heyting arithmetic HA in a “logic-free” fragment T 0 of his theory T of primitive recursive functionals of finite types by his famous Dialectica-translation D . This works because the logic of HA is extremely simple. If the logic of the interpreted system is different—in particular more complicated—, it forces us to look for different and more complicated functional translations. We discuss the arising logical problems for arithmetical and set theoretical systems from HA to CZF . We want (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations