Switch to: References

Add citations

You must login to add citations.
  1. The Logic of Potential Infinity.Roy T. Cook - forthcoming - Philosophia Mathematica.
    Michael Dummett argues that acceptance of potentially infinite collections requires that we abandon classical logic and restrict ourselves to intuitionistic logic. In this paper we examine whether Dummett is correct. After developing two detailed accounts of what, exactly, it means for a concept to be potentially infinite (based on ideas due to Charles McCarty and Øystein Linnebo, respectively), we construct a Kripke structure that contains a natural number structure that satisfies both accounts. This model supports a logic much stronger than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realisability for infinitary intuitionistic set theory.Merlin Carl, Lorenzo Galeotti & Robert Passmann - 2023 - Annals of Pure and Applied Logic 174 (6):103259.
    Download  
     
    Export citation  
     
    Bookmark  
  • Putnam’s model-theoretic argument (meta)reconstructed: In the mirror of Carpintero’s and van Douven’s interpretations.Krystian Jobczyk - 2022 - Synthese 200 (6):1-37.
    In “Models and Reality”, H. Putnam formulated his model-theoretic argument against “metaphysical realism”. The article proposes a meta-reconstruction of Putnam’s model-theoretic argument in the light of two mutually compatible interpretations of it–elaborated by Manuel Garcia-Carpintero and Igor van Douven. A critical reflection on these interpretations and their adequacy for Putnam’s argument allows us to expose new theses coherent with Putnam’s reasoning and indicate new paths to improve this argument for our reconstruction task. In particular, we show that Putnam’s position may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Preservation of choice principles under realizability.Eman Dihoum & Michael Rathjen - 2019 - Logic Journal of the IGPL 27 (5):746-765.
    Especially nice models of intuitionistic set theories are realizability models $V$, where $\mathcal A$ is an applicative structure or partial combinatory algebra. This paper is concerned with the preservation of various choice principles in $V$ if assumed in the underlying universe $V$, adopting Constructive Zermelo–Fraenkel as background theory for all of these investigations. Examples of choice principles are the axiom schemes of countable choice, dependent choice, relativized dependent choice and the presentation axiom. It is shown that any of these axioms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Possibilities, models, and intuitionistic logic: Ian Rumfitt’s The boundary stones of thought.Stewart Shapiro - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):812-825.
    ABSTRACTAIan Rumfitt's new book presents a distinctive and intriguing philosophy of logic, one that ultimately settles on classical logic as the uniquely correct one–or at least rebuts some prominent arguments against classical logic. The purpose of this note is to evaluate Rumfitt's perspective by focusing on some themes that have occupied me for some time: the role and importance of model theory and, in particular, the place of counter-arguments in establishing invalidity, higher-order logic, and the logical pluralism/relativism articulated in my (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Paradoxes in Normal Form.Mattia Petrolo & Paolo Pistone - 2019 - Topoi 38 (3):605-617.
    A proof-theoretic test for paradoxicality was famously proposed by Tennant: a paradox must yield a closed derivation of absurdity with no normal form. Drawing on the remark that all derivations of a given proposition can be transformed into derivations in normal form of a logically equivalent proposition, we investigate the possibility of paradoxes in normal form. We compare paradoxes à la Tennant and paradoxes in normal form from the viewpoint of the computational interpretation of proofs and from the viewpoint of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On partial disjunction properties of theories containing Peano arithmetic.Taishi Kurahashi - 2018 - Archive for Mathematical Logic 57 (7-8):953-980.
    Let \ be a class of formulas. We say that a theory T in classical logic has the \-disjunction property if for any \ sentences \ and \, either \ or \ whenever \. First, we characterize the \-disjunction property in terms of the notion of partial conservativity. Secondly, we prove a model theoretic characterization result for \-disjunction property. Thirdly, we investigate relationships between partial disjunction properties and several other properties of theories containing Peano arithmetic. Finally, we investigate unprovability of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An epistemic approach to paraconsistency: a logic of evidence and truth.Walter Carnielli & Abilio Rodrigues - 2019 - Synthese 196 (9):3789-3813.
    The purpose of this paper is to present a paraconsistent formal system and a corresponding intended interpretation according to which true contradictions are not tolerated. Contradictions are, instead, epistemically understood as conflicting evidence, where evidence for a proposition A is understood as reasons for believing that A is true. The paper defines a paraconsistent and paracomplete natural deduction system, called the Basic Logic of Evidence, and extends it to the Logic of Evidence and Truth. The latter is a logic of (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2017 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Brouwer’s weak counterexamples and testability: Further remarks: Brouwer’s weak counterexamples and testability: Further remarks.Charles Mccarty - 2013 - Review of Symbolic Logic 6 (3):513-523.
    Straightforwardly and strictly intuitionistic inferences show that the Brouwer– Heyting–Kolmogorov interpretation, in the presence of a formulation of the recognition principle, entails the validity of the Law of Testability: that the form ¬ f V ¬¬ f is valid. Therefore, the BHK and recognition, as described here, are inconsistent with the axioms both of intuitionistic mathematics and of Markovian constructivism. This finding also implies that, if the BHK and recognition are suitably formulated, then Brouwer’s original weak counterexample reasoning was fallacious. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Learning based realizability for HA + EM1 and 1-Backtracking games: Soundness and completeness.Federico Aschieri - 2013 - Annals of Pure and Applied Logic 164 (6):591-617.
    We prove a soundness and completeness result for Aschieri and Berardiʼs learning based realizability for Heyting Arithmetic plus Excluded Middle over semi-decidable statements with respect to 1-Backtracking Coquand game semantics. First, we prove that learning based realizability is sound with respect to 1-Backtracking Coquand game semantics. In particular, any realizer of an implication-and-negation-free arithmetical formula embodies a winning recursive strategy for the 1-Backtracking version of Tarski games. We also give examples of realizers and winning strategy extraction for some classical proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kripke Models, Distributive Lattices, and Medvedev Degrees.Sebastiaan A. Terwijn - 2007 - Studia Logica 85 (3):319-332.
    We define a variant of the standard Kripke semantics for intuitionistic logic, motivated by the connection between constructive logic and the Medvedev lattice. We show that while the new semantics is still complete, it gives a simple and direct correspondence between Kripke models and algebraic structures such as factors of the Medvedev lattice.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Gentzen-style theory of functions.L. Gordeev - 1988 - Annals of Pure and Applied Logic 38 (1):42.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explicit provability and constructive semantics. [REVIEW]Jeremy D. Avigad - 2002 - Bulletin of Symbolic Logic 8 (3):432-432.
    Download  
     
    Export citation  
     
    Bookmark  
  • Confined modified realizability.Gilda Ferreira & Paulo Oliva - 2010 - Mathematical Logic Quarterly 56 (1):13-28.
    We present a refinement ofthe bounded modified realizability which provides both upper and lower bounds for witnesses. Our interpretation is based on a generalisation of Howard/Bezem's notion of strong majorizability. We show how the bounded modified realizability coincides with our interpretation in the case when least elements exist . The new interpretation, however, permits the extraction of more accurate bounds, and provides an ideal setting for dealing directly with data types whose natural ordering is not well-founded.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory.Ray-Ming Chen & Michael Rathjen - 2012 - Archive for Mathematical Logic 51 (7-8):789-818.
    A variant of realizability for Heyting arithmetic which validates Church’s thesis with uniqueness condition, but not the general form of Church’s thesis, was introduced by Lifschitz (Proc Am Math Soc 73:101–106, 1979). A Lifschitz counterpart to Kleene’s realizability for functions (in Baire space) was developed by van Oosten (J Symb Log 55:805–821, 1990). In that paper he also extended Lifschitz’ realizability to second order arithmetic. The objective here is to extend it to full intuitionistic Zermelo–Fraenkel set theory, IZF. The machinery (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A modal type theory for formalizing trusted communications.Giuseppe Primiero & Mariarosaria Taddeo - 2012 - Journal of Applied Logic 10 (1):92-114.
    This paper introduces a multi-modal polymorphic type theory to model epistemic processes characterized by trust, defined as a second-order relation affecting the communication process between sources and a receiver. In this language, a set of senders is expressed by a modal prioritized context, whereas the receiver is formulated in terms of a contextually derived modal judgement. Introduction and elimination rules for modalities are based on the polymorphism of terms in the language. This leads to a multi-modal non-homogeneous version of a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Existence, proof and truth-making: A perspective on the intuitionistic conception of truth.Göran Sundholm - 1994 - Topoi 13 (2):117-126.
    Truth-maker analyses construe truth as existence of proof, a well-known example being that offered by Wittgenstein in theTractatus. The paper subsumes the intuitionistic view of truth as existence of proof under the general truth-maker scheme. Two generic constraints on truth-maker analysis are noted and positioned with respect to the writings of Michael Dummett and theTractatus. Examination of the writings of Brouwer, Heyting and Weyl indicates the specific notions of truth-maker and existence that are at issue in the intuitionistic truth-maker analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Realizability and intuitionistic logic.J. Diller & A. S. Troelstra - 1984 - Synthese 60 (2):253 - 282.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Intuitionistic sets and numbers: small set theory and Heyting arithmetic.Stewart Shapiro, Charles McCarty & Michael Rathjen - forthcoming - Archive for Mathematical Logic.
    It has long been known that (classical) Peano arithmetic is, in some strong sense, “equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including choice) in which the axiom of infinity is replaced by its negation. The intended model of the latter is the set of hereditarily finite sets. The connection between the theories is so tight that they may be taken as notational variants of each other. Our purpose here is to develop and establish a constructive version of this. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Formal systems for some branches of intuitionistic analysis.G. Kreisel - 1970 - Annals of Mathematical Logic 1 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Realizability semantics for quantified modal logic: Generalizing flagg’s 1985 construction.Benjamin G. Rin & Sean Walsh - 2016 - Review of Symbolic Logic 9 (4):752-809.
    A semantics for quantified modal logic is presented that is based on Kleene's notion of realizability. This semantics generalizes Flagg's 1985 construction of a model of a modal version of Church's Thesis and first-order arithmetic. While the bulk of the paper is devoted to developing the details of the semantics, to illustrate the scope of this approach, we show that the construction produces (i) a model of a modal version of Church's Thesis and a variant of a modal set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Topologies and free constructions.Anna Bucalo & Giuseppe Rosolini - 2013 - Logic and Logical Philosophy 22 (3):327-346.
    The standard presentation of topological spaces relies heavily on (naïve) set theory: a topology consists of a set of subsets of a set (of points). And many of the high-level tools of set theory are required to achieve just the basic results about topological spaces. Concentrating on the mathematical structures, category theory offers the possibility to look synthetically at the structure of continuous transformations between topological spaces addressing specifically how the fundamental notions of point and open come about. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Obstacles Facing a Semantic Foundation for Constructive Mathematics.Michael R. Koss - 2015 - Erkenntnis 80 (5):1055-1068.
    This paper discusses Michael Dummett’s attempt to base the use of intuitionistic logic in mathematics on a proof-conditional semantics. This project is shown to face significant obstacles resulting from the existence of variants of standard intuitionistic logic. In order to overcome these obstacles, Dummett and his followers must give an intuitionistically acceptable completeness proof for intuitionistic logic relative to the BHK interpretation of the logical constants, but there are reasons to doubt that such a proof is possible. The paper concludes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of Brouwer and Heyting.Joan Rand Moschovakis - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 77-125.
    Download  
     
    Export citation  
     
    Bookmark  
  • Realizing Brouwer's sequences.Richard E. Vesley - 1996 - Annals of Pure and Applied Logic 81 (1-3):25-74.
    When Kleene extended his recursive realizability interpretation from intuitionistic arithmetic to analysis, he was forced to use more than recursive functions to interpret sequences and conditional constructions. In fact, he used what classically appears to be the full continuum. We describe here a generalization to higher type of Kleene's realizability, one case of which, -realizability, uses general recursive functions throughout, both to realize theorems and to interpret choice sequences. -realizability validates a version of the bar theorem and the usual continuity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Analyzing realizability by Troelstra's methods.Joan Rand Moschovakis - 2002 - Annals of Pure and Applied Logic 114 (1-3):203-225.
    Realizabilities are powerful tools for establishing consistency and independence results for theories based on intuitionistic logic. Troelstra discovered principles ECT 0 and GC 1 which precisely characterize formal number and function realizability for intuitionistic arithmetic and analysis, respectively. Building on Troelstra's results and using his methods, we introduce the notions of Church domain and domain of continuity in order to demonstrate the optimality of “almost negativity” in ECT 0 and GC 1 ; strengthen “double negation shift” DNS 0 to DNS (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Natural factors of the Muchnik lattice capturing IPC.Rutger Kuyper - 2013 - Annals of Pure and Applied Logic 164 (10):1025-1036.
    We give natural examples of factors of the Muchnik lattice which capture intuitionistic propositional logic , arising from the concepts of lowness, 1-genericity, hyperimmune-freeness and computable traceability. This provides a purely computational semantics for IPC.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • [Foreign Language Ignored].[Foreign Language Ignored] [Foreign Language Ignored] - 1973 - Mathematical Logic Quarterly 19 (30):453-468.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Metric spaces in synthetic topology.Andrej Bauer & Davorin Lešnik - 2012 - Annals of Pure and Applied Logic 163 (2):87-100.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empirical Negation.Michael De - 2013 - Acta Analytica 28 (1):49-69.
    An extension of intuitionism to empirical discourse, a project most seriously taken up by Dummett and Tennant, requires an empirical negation whose strength lies somewhere between classical negation (‘It is unwarranted that. . . ’) and intuitionistic negation (‘It is refutable that. . . ’). I put forward one plausible candidate that compares favorably to some others that have been propounded in the literature. A tableau calculus is presented and shown to be strongly complete.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Paradox and Potential Infinity.Charles McCarty - 2013 - Journal of Philosophical Logic 42 (1):195-219.
    We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The logic of justification.Sergei Artemov - 2008 - Review of Symbolic Logic 1 (4):477-513.
    We describe a general logical framework, Justification Logic, for reasoning about epistemic justification. Justification Logic is based on classical propositional logic augmented by justification assertions t: F that read t is a justification for F. Justification Logic absorbs basic principles originating from both mainstream epistemology and the mathematical theory of proofs. It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state a general Correspondence Theorem showing that behind each epistemic modal logic, there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functional interpretations of constructive set theory in all finite types.Justus Diller - 2008 - Dialectica 62 (2):149–177.
    Gödel's dialectica interpretation of Heyting arithmetic HA may be seen as expressing a lack of confidence in our understanding of unbounded quantification. Instead of formally proving an implication with an existential consequent or with a universal antecedent, the dialectica interpretation asks, under suitable conditions, for explicit 'interpreting' instances that make the implication valid. For proofs in constructive set theory CZF-, it may not always be possible to find just one such instance, but it must suffice to explicitly name a set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Choice and independence of premise rules in intuitionistic set theory.Emanuele Frittaion, Takako Nemoto & Michael Rathjen - 2023 - Annals of Pure and Applied Logic 174 (9):103314.
    Download  
     
    Export citation  
     
    Bookmark  
  • Herbrandized modified realizability.Gilda Ferreira & Paulo Firmino - 2024 - Archive for Mathematical Logic 63 (5):703-721.
    Realizability notions in mathematical logic have a long history, which can be traced back to the work of Stephen Kleene in the 1940s, aimed at exploring the foundations of intuitionistic logic. Kleene’s initial realizability laid the ground for more sophisticated notions such as Kreisel’s modified realizability and various modern approaches. In this context, our work aligns with the lineage of realizability strategies that emphasize the accumulation, rather than the propagation of precise witnesses. In this paper, we introduce a new notion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maria Hämeen-Anttila* and Jan von Plato,** eds, Kurt Gödel: The Princeton Lectures on Intuitionism.Ulrich Kohlenbach - 2023 - Philosophia Mathematica 31 (1):112-119.
    This book publishes for the first time notes from two notebooks of Gödel which formed the basis of a course on intuitionism Gödel delivered at Princeton in the.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic fixed point logic.Ulrich Berger & Hideki Tsuiki - 2021 - Annals of Pure and Applied Logic 172 (3):102903.
    We study the system IFP of intuitionistic fixed point logic, an extension of intuitionistic first-order logic by strictly positive inductive and coinductive definitions. We define a realizability interpretation of IFP and use it to extract computational content from proofs about abstract structures specified by arbitrary classically true disjunction free formulas. The interpretation is shown to be sound with respect to a domain-theoretic denotational semantics and a corresponding lazy operational semantics of a functional language for extracted programs. We also show how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Natural factors of the Medvedev lattice capturing IPC.Rutger Kuyper - 2014 - Archive for Mathematical Logic 53 (7):865-879.
    Skvortsova showed that there is a factor of the Medvedev lattice which captures intuitionistic propositional logic (IPC). However, her factor is unnatural in the sense that it is constructed in an ad hoc manner. We present a more natural example of such a factor. We also show that the theory of every non-trivial factor of the Medvedev lattice is contained in Jankov’s logic, the deductive closure of IPC plus the weak law of the excluded middle $${\neg p \vee \neg \neg (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Essay review.Carl J. Posy - 1983 - History and Philosophy of Logic 4 (1-2):83-90.
    MICHAEL DUMMETT, Elements of intuitionism. With the assistance of Robert Minio. Oxford: Oxford University Press, 1977. xii + 466 pp. No price stated.
    Download  
     
    Export citation  
     
    Bookmark  
  • The development of intuitionistic logic.Mark van Atten - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • CZF does not have the existence property.Andrew W. Swan - 2014 - Annals of Pure and Applied Logic 165 (5):1115-1147.
    Constructive theories usually have interesting metamathematical properties where explicit witnesses can be extracted from proofs of existential sentences. For relational theories, probably the most natural of these is the existence property, EP, sometimes referred to as the set existence property. This states that whenever ϕϕ is provable, there is a formula χχ such that ϕ∧χϕ∧χ is provable. It has been known since the 80s that EP holds for some intuitionistic set theories and yet fails for IZF. Despite this, it has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Realizability and recursive set theory.Charles McCarty - 1986 - Annals of Pure and Applied Logic 32:153-183.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • From the weak to the strong existence property.Michael Rathjen - 2012 - Annals of Pure and Applied Logic 163 (10):1400-1418.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Kleene's amazing second recursion theorem.Yiannis N. Moschovakis - 2010 - Bulletin of Symbolic Logic 16 (2):189 - 239.
    This little gem is stated unbilled and proved in the last two lines of §2 of the short note Kleene [1938]. In modern notation, with all the hypotheses stated explicitly and in a strong form, it reads as follows:Second Recursion Theorem. Fix a set V ⊆ ℕ, and suppose that for each natural number n ϵ ℕ = {0, 1, 2, …}, φn: ℕ1+n ⇀ V is a recursive partial function of arguments with values in V so that the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations