Switch to: Citations

Add references

You must login to add references.
  1. Understanding thermodynamic singularities: Phase transitions, data, and phenomena.Sorin Bangu - 2009 - Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Emergence, Singularities, and Symmetry Breaking.Robert W. Batterman - 2011 - Foundations of Physics 41 (6):1031-1050.
    This paper looks at emergence in physical theories and argues that an appropriate way to understand socalled “emergent protectorates” is via the explanatory apparatus of the renormalization group. It is argued that mathematical singularities play a crucial role in our understanding of at least some well-defined emergent features of the world.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (6 other versions)The Structure of Scientific Revolutions.Thomas Samuel Kuhn - 1962 - Chicago: University of Chicago Press. Edited by Otto Neurath.
    A scientific community cannot practice its trade without some set of received beliefs. These beliefs form the foundation of the "educational initiation that prepares and licenses the student for professional practice". The nature of the "rigorous and rigid" preparation helps ensure that the received beliefs are firmly fixed in the student's mind. Scientists take great pains to defend the assumption that scientists know what the world is like...To this end, "normal science" will often suppress novelties which undermine its foundations. Research (...)
    Download  
     
    Export citation  
     
    Bookmark   2709 citations  
  • (6 other versions)The Structure of Scientific Revolutions.Thomas S. Kuhn - 1962 - Chicago, IL: University of Chicago Press. Edited by Ian Hacking.
    Thomas S. Kuhn's classic book is now available with a new index.
    Download  
     
    Export citation  
     
    Bookmark   4756 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Had We But World Enough, and Time... But We Don’t!: Justifying the Thermodynamic and Infinite-Time Limits in Statistical Mechanics.Patricia Palacios - 2018 - Foundations of Physics 48 (5):526-541.
    In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior also arises before we get to the limit and for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Falling cats, parallel parking, and polarized light.Robert W. Batterman - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):527-557.
    This paper addresses issues surrounding the concept of geometric phase or "anholonomy". Certain physical phenomena apparently require for their explanation and understanding, reference to toplogocial/geometric features of some abstract space of parameters. These issues are related to the question of how gauge structures are to be interpreted and whether or not the debate over their "reality" is really going to be fruitful.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Less is Different: Emergence and Reduction Reconciled. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):1065-1135.
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Emergent Physics and Micro-Ontology.Margaret Morrison - 2012 - Philosophy of Science 79 (1):141-166.
    This article examines ontological/dynamical aspects of emergence, specifically the micro-macro relation in cases of universal behavior. I discuss superconductivity as an emergent phenomenon, showing why microphysical features such as Cooper pairing are not necessary for deriving characteristic properties such as infinite conductivity. I claim that the difficulties surrounding the thermodynamic limit in explaining phase transitions can be countered by showing how renormalization group techniques facilitate an understanding of the physics behind the mathematics, enabling us to clarify epistemic and ontological aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)La théorie physique: son objet et sa structure.P. Duhem - 1906 - Revue Philosophique de la France Et de l'Etranger 61:324-327.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
    In this essay, I provide an overview of the debate on infinite and essential idealizations in physics. I will first present two ostensible examples: phase transitions and the Aharonov– Bohm effect. Then, I will describe the literature on the topic as a debate between two positions: Essentialists claim that idealizations are essential or indispensable for scientific accounts of certain physical phenomena, while dispensabilists maintain that idealizations are dispensable from mature scientific theory. I will also identify some attempts at finding a (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)The role of idealizations in the Aharonov–Bohm effect.John Earman - 2017 - Synthese:1-29.
    On standard accounts of scientific theorizing, the role of idealizations is to facilitate the analysis of some real world system by employing a simplified representation of the target system, raising the obvious worry about how reliable knowledge can be obtained from inaccurate descriptions. The idealizations involved in the Aharonov–Bohm effect do not, it is claimed, fit this paradigm; rather the target system is a fictional system characterized by features that, though physically possible, are not realized in the actual world. The (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Gauging What's Real: The Conceptual Foundations of Contemporary Gauge Theories.Richard Healey - 2007 - Oxford, GB: Oxford University Press.
    This is a prize-winning study of an area of physics not previously explored by philosophy: gauge theory. Gauge theories have provided our most successful representations of the fundamental forces of nature. But how do such representations work? Healey defends an original answer to this question.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Sameness and Separability in Gauge Theories.John Dougherty - 2016 - Philosophy of Science 84 (5):1189-1201.
    In the philosophical literature on Yang-Mills theories, field formulations are taken to have more structure and to be local, while curve-based formulations are taken to have less structure and to be nonlocal. I formalize the notion of locality at issue and show that theories with less structure are nonlocal. However, the amount of structure had by some formulation is independent of whether it uses fields or curves. The relevant difference in structure is not a difference in set-theoretic structure. Rather, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Taking Thermodynamics Too Seriously.Craig Callender - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):539-553.
    This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Nonseparability, Classical, and Quantum.Wayne C. Myrvold - 2011 - British Journal for the Philosophy of Science 62 (2):417-432.
    This article examines the implications of the holonomy interpretation of classical electromagnetism. As has been argued by Richard Healey and Gordon Belot, classical electromagnetism on this interpretation evinces a form of nonseparability, something that otherwise might have been thought of as confined to nonclassical physics. Consideration of the differences between this classical nonseparability and quantum nonseparability shows that the nonseparability exhibited by the classical electromagnetism on the holonomy interpretation is closer to separability than might at first appear.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Holism and structuralism in U(1) gauge theory.Holger Lyre - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):643-670.
    After decades of neglect philosophers of physics have discovered gauge theories--arguably the paradigm of modern field physics--as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism--in the eyes of its proponents the best suited realist position towards modern physics--has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories--in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • (1 other version)The role of idealizations in the Aharonov–Bohm effect.John Earman - 2019 - Synthese 196 (5):1991-2019.
    On standard accounts of scientific theorizing, the role of idealizations is to facilitate the analysis of some real world system by employing a simplified representation of the target system, raising the obvious worry about how reliable knowledge can be obtained from inaccurate descriptions. The idealizations involved in the Aharonov–Bohm effect do not, it is claimed, fit this paradigm; rather the target system is a fictional system characterized by features that, though physically possible, are not realized in the actual world. The (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)La théorie physique; son objet, sa structure.P. Duhem - 1904 - Revue de Philosophie 4:387.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Turn and Face the Strange... Ch-ch-changes: Philosophical Questions Raised by Phase Transitions.Tarun Menon & Craig Callender - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA.
    Phase transitions are an important instance of putatively emergent behavior. Unlike many things claimed emergent by philosophers, the alleged emergence of phase transitions stems from both philosophical and scientific arguments. Here we focus on the case for emergence built from physics, in particular, arguments based upon the infinite idealization invoked in the statistical mechanical treatment of phase transitions. After teasing apart several challenges, we defend the idea that phase transitions are best thought of as conceptually novel, but not ontologically or (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon.Elay Shech - 2015 - Foundations of Physics 45 (9):1063-1100.
    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov–Bohm effect, it is suggested that the standard approach to the effects— the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A fourth way to the Aharonov-Bohm effect.Antigone M. Nounou - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   20 citations