Switch to: Citations

Add references

You must login to add references.
  1. The foundations of quantum mechanics and the approach to thermodynamic equilibrium.David Z. Albert - 1994 - British Journal for the Philosophy of Science 45 (2):669-677.
    It is argued that certain recent advances in the construction of a theory of the collapses of Quantum Mechanical wave functions suggest the possibility of new and improved foundations for statistical mechanics, foundations in which epistemic considerations play no role.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Can conditioning on the “past hypothesis” militate against the reversibility objections?Eric Winsberg - 2004 - Philosophy of Science 71 (4):489-504.
    In his recent book, Time and Chance, David Albert claims that by positing that there is a uniform probability distribution defined, on the standard measure, over the space of microscopic states that are compatible with both the current macrocondition of the world, and with what he calls the “past hypothesis”, we can explain the time asymmetry of all of the thermodynamic behavior in the world. The principal purpose of this paper is to dispute this claim. I argue that Albert's proposal (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Epsilon-ergodicity and the success of equilibrium statistical mechanics.Peter B. M. Vranas - 1998 - Philosophy of Science 65 (4):688-708.
    Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt Malament and Zabell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Boltzmann’s Time Bomb.Huw Price - 2002 - British Journal for the Philosophy of Science 53 (1):83-119.
    Since the late nineteenth century, physics has been puzzled by the time-asymmetry of thermodynamic phenomena in the light of the apparent T-symmetry of the underlying laws of mechanics. However, a compelling solution to this puzzle has proved elusive. In part, I argue, this can be attributed to a failure to distinguish two conceptions of the problem. According to one, the main focus of our attention is a time-asymmetric lawlike generalisation. According to the other, it is a particular fact about the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On the time reversal invariance of classical electromagnetic theory.David B. Malament - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):295-315.
    David Albert claims that classical electromagnetic theory is not time reversal invariant. He acknowledges that all physics books say that it is, but claims they are ``simply wrong" because they rely on an incorrect account of how the time reversal operator acts on magnetic fields. On that account, electric fields are left intact by the operator, but magnetic fields are inverted. Albert sees no reason for the asymmetric treatment, and insists that neither field should be inverted. I argue, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Can We Explain Thermodynamics By Quantum Decoherence?Meir Hemmo & Orly Shenker - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):555-568.
    Can we explain the laws of thermodynamics, in particular the irreversible increase of entropy, from the underlying quantum mechanical dynamics? Attempts based on classical dynamics have all failed. Albert (1994a,b; 2000) proposed a way to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wavefunction of Ghirardi, Rimini and Weber (1986). In this paper we propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Why ergodic theory does not explain the success of equilibrium statistical mechanics.John Earman & Miklós Rédei - 1996 - British Journal for the Philosophy of Science 47 (1):63-78.
    We argue that, contrary to some analyses in the philosophy of science literature, ergodic theory falls short in explaining the success of classical equilibrium statistical mechanics. Our claim is based on the observations that dynamical systems for which statistical mechanics works are most likely not ergodic, and that ergodicity is both too strong and too weak a condition for the required explanation: one needs only ergodic-like behaviour for the finite set of observables that matter, but the behaviour must ensure that (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • What time reversal invariance is and why it matters.John Earman - 2002 - International Studies in the Philosophy of Science 16 (3):245 – 264.
    David Albert's Time and Chance (2000) provides a fresh and interesting perspective on the problem of the direction of time. Unfortunately, the book opens with a highly non-standard exposition of time reversal invariance that distorts the subsequent discussion. The present article not only has the remedial goal of setting the record straight about the meaning of time reversal invariance, but it also aims to show how the niceties of this symmetry concept matter to the problem of the direction of time (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • There Is No Puzzle about the Low Entropy Past.Craig Callender - 2004 - In Christopher Hitchcock (ed.), Contemporary Debates in Philosophy of Science. Blackwell. pp. 240-255.
    Suppose that God or a demon informs you of the following future fact: despite recent cosmological evidence, the universe is indeed closed and it will have a ‘final’ instant of time; moreover, at that final moment, all 49 of the world’s Imperial Faberge eggs will be in your bedroom bureau’s sock drawer. You’re absolutely certain that this information is true. All of your other dealings with supernatural powers have demonstrated that they are a trustworthy lot.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Thermodynamic asymmetry in time.Craig Callender - 2006 - Stanford Encyclopedia of Philosophy.
    Thermodynamics is the science that describes much of the time asymmetric behavior found in the world. This entry's first task, consequently, is to show how thermodynamics treats temporally ‘directed’ behavior. It then concentrates on the following two questions. (1) What is the origin of the thermodynamic asymmetry in time? In a world possibly governed by time symmetric laws, how should we understand the time asymmetric laws of thermodynamics? (2) Does the thermodynamic time asymmetry explain the other temporal asymmetries? Does it (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Boltzmann's Approach to Statistical Mechanics.Sheldon Goldstein - unknown
    In the last quarter of the nineteenth century, Ludwig Boltzmann explained how irreversible macroscopic laws, in particular the second law of thermodynamics, originate in the time-reversible laws of microscopic physics. Boltzmann’s analysis, the essence of which I shall review here, is basically correct. The most famous criticisms of Boltzmann’s later work on the subject have little merit. Most twentieth century innovations – such as the identification of the state of a physical system with a probability distribution on its phase space, (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Tracking down gauge: An ode to the constrained Hamiltonian formalism.John Earman - 2003 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 140--62.
    Like moths attracted to a bright light, philosophers are drawn to glitz. So in discussing the notions of ‘gauge’, ‘gauge freedom’, and ‘gauge theories’, they have tended to focus on examples such as Yang–Mills theories and on the mathematical apparatus of fibre bundles. But while Yang–Mills theories are crucial to modern elementary particle physics, they are only a special case of a much broader class of gauge theories. And while the fibre bundle apparatus turned out, in retrospect, to be the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On the Origins of the Arrow of Time: Why There is Still a Puzzle about the Low Entropy Past.Huw Price - 2004 - In Christopher Hitchcock (ed.), Contemporary Debates in Philosophy of Science. Blackwell. pp. 219--239.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Kind of Motion We Call Heat.S. G. Brush - 1982 - British Journal for the Philosophy of Science 33 (2):165-186.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The Elusive Object of Desire: In Pursuit of the Kinetic Equations and the Second Law.Lawrence Sklar - 1986 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986:209 - 225.
    Despite over one-hundred years of effort, the origin of temporal asymmetry in the physical world still eludes us. While much has been learned about the role played by fundamental instabilities in microdynamics, by the imperfect isolation of systems and by cosmological facts in the origin of the behavior described by kinetic theory and thermodynamics, important puzzles still remain which continue to make the origins of asymmetric thermal behavior out of dynamically time symmetric underlying laws mysterious to us.
    Download  
     
    Export citation  
     
    Bookmark   10 citations