Switch to: Citations

Add references

You must login to add references.
  1. Peano on Symbolization, Design Principles for Notations, and the Dot Notation.Dirk Schlimm - 2021 - Philosophia Scientiae 25:95-126.
    Peano was one of the driving forces behind the development of the current mathematical formalism. In this paper, we study his particular approach to notational design and present some original features of his notations. To explain the motivations underlying Peano's approach, we first present his view of logic as a method of analysis and his desire for a rigorous and concise symbolism to represent mathematical ideas. On the basis of both his practice and his explicit reflections on notations, we discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Untersuchungen über das logische Schließen. I.Gerhard Gentzen - 1935 - Mathematische Zeitschrift 35:176–210.
    Download  
     
    Export citation  
     
    Bookmark   130 citations  
  • Permanence as a Principle of Practice.Iulian D. Toader - 2021 - Historia Mathematica 54:77-94.
    The paper discusses Peano's defense and application of permanence of forms as a principle of mathematical practice. (Dedicated to the memory of Mic Detlefsen.).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (3 other versions)Marginalia in Russell's Copy of Gerhardt's Edition of Leibniz's Philosophische Schriften.Richard T. W. Arthur, Jolen Galaugher & Nicholas Griffin - 2017 - Russell: The Journal of Bertrand Russell Studies 37 (1).
    Russell’s most important source for his book on Leibniz was C. I. Gerhardt’s seven-volume Die philosophischen Schriften von Gottfried Wilhelm Leibniz. Russell heavily annotated his copy of this important edition of Leibniz’s works. The present paper records all Russell’s marginalia, with the exception of passages marked merely by vertical lines in the margin, and provides explanatory commentary.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Simplex sigillum veri: Peano, Frege, and Peirce on the Primitives of Logic.Francesco Bellucci, Amirouche Moktefi & Ahti-Veikko Pietarinen - 2018 - History and Philosophy of Logic 39 (1):80-95.
    We propose a reconstruction of the constellation of problems and philosophical positions on the nature and number of the primitives of logic in four authors of the nineteenth century logical scene: Peano, Padoa, Frege and Peirce. We argue that the proposed reconstruction forces us to recognize that it is in at least four different senses that a notation can be said to be simpler than another, and we trace the origins of these four senses in the writings of these authors. (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Russell's Notes on Frege for Appendix A of The Principles of Mathematics.Bernard Linsky - 2004 - Russell: The Journal of Bertrand Russell Studies 24 (2):133-172.
    This article presents notes that Russell made while reading the works of Gottlob Frege in 1902. These works include Frege’s books as well as the packet of offprints Frege sent at Russell’s request in June of that year. Russell relied on these notes while composing “Appendix A: The Logical and Arithmetical Doctrines of Frege” to add to _The Principles of Mathematics_, which was then in press. A transcription of the marginal comments in those works of Frege appeared in the previous (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
    Download  
     
    Export citation  
     
    Bookmark   819 citations  
  • (1 other version)The Development of Logic.William Kneale & Martha Kneale - 1962 - Studia Logica 15:308-310.
    Download  
     
    Export citation  
     
    Bookmark   313 citations  
  • (2 other versions)Introduction to Logic and to the Methodology of Deductive Sciences.Alfred Tarski & Olaf Helmer - 1944 - Philosophy 19 (72):90-91.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Principia Mathematica.Morris R. Cohen - 1912 - Philosophical Review 21 (1):87.
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • (2 other versions)Introduction to Logic and to the Methodology of the Deductive Sciences. [REVIEW]Alfred Tarski - 1942 - Modern Schoolman 20 (1):56-56.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Principia Mathematica Vol. Ii.A. N. Whitehead & B. Russell - 1912 - Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Elementary Logic.Robert L. Stanley & Willard Van Orman Quine - 1966 - Journal of Symbolic Logic 35 (1):166.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Methods of Logic.A. R. Turquette & Willard Van Orman Quine - 1951 - Journal of Symbolic Logic 16 (4):268.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • The convenience of the typesetter; notation and typography in Frege’s Grundgesetze der Arithmetik.Jim J. Green, Marcus Rossberg & A. Ebert Philip - 2015 - Bulletin of Symbolic Logic 21 (1):15-30.
    We discuss the typography of the notation used by Gottlob Frege in his Grundgesetze der Arithmetik.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Logic of Relations.Robert Charles Marsh, Bertrand Russell & R. C. Marsh - 1960 - Journal of Symbolic Logic 25 (4):332-333.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Development and Crisis in Late Boolean Logic: The Deductive Logics of Peirce, Jevons, and Schroder.Randall Roy Dipert - 1978 - Dissertation, Indiana University
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (5 other versions)Grundzüge der theoretischen Logik.David Hilbert & Wilhelm Ackermann - 1928 - Berlin,: J. Springer. Edited by W. Ackermann.
    Die theoretische Logik, auch mathematische oder symbolische Logik genannt, ist eine Ausdehnung der fonnalen Methode der Mathematik auf das Gebiet der Logik. Sie wendet fUr die Logik eine ahnliche Fonnel­ sprache an, wie sie zum Ausdruck mathematischer Beziehungen schon seit langem gebrauchlich ist. In der Mathematik wurde es heute als eine Utopie gelten, wollte man beim Aufbau einer mathematischen Disziplin sich nur der gewohnlichen Sprache bedienen. Die groBen Fortschritte, die in der Mathematik seit der Antike gemacht worden sind, sind zum (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Logisch-philosophische Abhandlung.Ludwig Wittgenstein - 1988 - Routledge.
    If a god creates a world in which certain propositions are true, then by that very act he also creates a world in which all the propositions that follow from them come true. And similarly he could not create a world in which the proposition 'p' was true without creating all its objects.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • La Logique Ou L'Art de Penser (1709).Antoine Arnauld & Pierre Nicole - 2009 - Vrin.
    This scarce antiquarian book is a facsimile reprint of the original. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment for protecting, preserving, and promoting the world's literature in affordable, high quality, modern editions that are true to the original work.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Einige methodologifche Unterfuchungen über die Definierbarkeit der Begriffe.Alfred Tarski - 1935 - Erkenntnis 5 (1):80-100.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Logic in Russell's Principles of Mathematics.Gregory Landini - 1996 - Notre Dame Journal of Formal Logic 37 (4):554-584.
    Unaware of Frege's 1879 Begriffsschrift, Russell's 1903 The Principles of Mathematics set out a calculus for logic whose foundation was the doctrine that any such calculus must adopt only one style of variables–entity (individual) variables. The idea was that logic is a universal and all-encompassing science, applying alike to whatever there is–propositions, universals, classes, concrete particulars. Unfortunately, Russell's early calculus has appeared archaic if not completely obscure. This paper is an attempt to recover the formal system, showing its philosophical background (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The mathematical origins of nineteenth-century algebra of logic.Volker Peckhaus - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press. pp. 159.
    This chapter discusses the complex conditions for the emergence of 19th-century symbolic logic. The main scope will be on the mathematical motives leading to the interest in logic; the philosophical context will be dealt with only in passing. The main object of study will be the algebra of logic in its British and German versions. Special emphasis will be laid on the systems of George Boole and above all of his German follower Ernst Schröder.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens.Gottlob Frege - 1879 - Halle a.d.S.: Louis Nebert.
    Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens / von Dr. Gottlob Frege,...Date de l'edition originale : 1879Ce livre est la reproduction fidele d'une oeuvre publiee avant 1920 et fait partie d'une collection de livres reimprimes a la demande editee par Hachette Livre, dans le cadre d'un partenariat avec la Bibliotheque nationale de France, offrant l'opportunite d'acceder a des ouvrages anciens et souvent rares issus des fonds patrimoniaux de la BnF.Les oeuvres faisant partie de cette collection ont ete numerisees (...)
    Download  
     
    Export citation  
     
    Bookmark   326 citations  
  • (1 other version)Introduction to logic and to the methodology of deductive sciences.Alfred Tarski - 1946 - New York: Dover Publications. Edited by Jan Tarski.
    This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)An Investigation of the Laws of Thought.George Boole - 1854 - [New York]: Dover Publications.
    AN INVESTIGATION OF THE LAWS OF THOUGHT. CHAPTER I. NATURE AND DESIGN OF THIS WORK. . HPHE design of the following treatise is to investigate the ...
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • (2 other versions)Principia Mathematica.A. N. Whitehead & B. Russell - 1927 - Annalen der Philosophie Und Philosophischen Kritik 2 (1):73-75.
    Download  
     
    Export citation  
     
    Bookmark   390 citations  
  • Between Russell and Hilbert: Behmann on the foundations of mathematics.Paolo Mancosu - 1999 - Bulletin of Symbolic Logic 5 (3):303-330.
    After giving a brief overview of the renewal of interest in logic and the foundations of mathematics in Göttingen in the period 1914-1921, I give a detailed presentation of the approach to the foundations of mathematics found in Behmann's doctoral dissertation of 1918, Die Antinomie der transfiniten Zahl und ihre Auflösung durch die Theorie von Russell und Whitehead. The dissertation was written under the guidance of David Hilbert and was primarily intended to give a clear exposition of the solution to (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • What Problem Did Ladd-Franklin (Think She) Solve(d)?Sara L. Uckelman - 2021 - Notre Dame Journal of Formal Logic 62 (3):527-552.
    Christine Ladd-Franklin is often hailed as a guiding star in the history of women in logic—not only did she study under C. S. Peirce and was one of the first women to receive a PhD from Johns Hopkins, she also, according to many modern commentators, solved a logical problem which had plagued the field of syllogisms since Aristotle. In this paper, we revisit this claim, posing and answering two distinct questions: Which logical problem did Ladd-Franklin solve in her thesis, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Frege’s Begriffsschrift Notation for Propositional Logic: Design Principles and Trade-Offs.Dirk Schlimm - 2017 - History and Philosophy of Logic 39 (1):53-79.
    Well over a century after its introduction, Frege's two-dimensional Begriffsschrift notation is still considered mainly a curiosity that stands out more for its clumsiness than anything else. This paper focuses mainly on the propositional fragment of the Begriffsschrift, because it embodies the characteristic features that distinguish it from other expressively equivalent notations. In the first part, I argue for the perspicuity and readability of the Begriffsschrift by discussing several idiosyncrasies of the notation, which allow an easy conversion of logically equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Whitehead and principia mathematica.Bertrand Russell - 1948 - Mind 57 (226):137-138.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A System of Logistic.Willard Van Orman Quine - 1934 - Cambridge, MA, USA: Harvard University Press.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical Logic. [REVIEW]E. N. & Willard Van Orman Quine - 1940 - Journal of Philosophy 37 (23):640.
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Logic and Mathematics in the Seventeenth Century.Massimo Mugnai - 2010 - History and Philosophy of Logic 31 (4):297-314.
    According to the received view (Bocheński, Kneale), from the end of the fourteenth to the second half of nineteenth century, logic enters a period of decadence. If one looks at this period, the richness of the topics and the complexity of the discussions that characterized medieval logic seem to belong to a completely different world: a simplified theory of the syllogism is the only surviving relic of a glorious past. Even though this negative appraisal is grounded on good reasons, it (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Propositional Logic from The Principles of Mathematics to Principia Mathematica.Bernard Linsky - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Cham, Switzerland: Springer Verlag.
    Bertrand Russell presented three systems of propositional logic, one first in Principles of Mathematics, University Press, Cambridge, 1903 then in “The Theory of Implication”, Routledge, New York, London, pp. 14–61, 1906) and culminating with Principia Mathematica, Cambridge University Press, Cambridge, 1910. They are each based on different primitive connectives and axioms. This paper follows “Peirce’s Law” through those systems with the aim of understanding some of the notorious peculiarities of the 1910 system and so revealing some of the early history (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Survey of Symbolic Logic.C. I. Lewis - 1918 - Journal of Philosophy, Psychology and Scientific Methods 17 (3):78-79.
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Russell and the Greeks.John R. Lenz - 1987 - Russell: The Journal of Bertrand Russell Studies 7 (2):104.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)An introduction to symbolic logic.Susanne Katherina Knauth Langer - 1937 - New York,: Dover Publications.
    Famous classic has introduced hundreds of thousands to symbolic logic, via clear, thorough, precise exposition.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Selected Works of Giuseppe Peano.Hubert C. Kennedy & Giuseppe Peano - 1980 - Journal of Symbolic Logic 45 (1):177-180.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Peano. Life and Works of Giuseppe Peano.Hubert C. Kennedy - 1983 - Journal of Symbolic Logic 48 (2):503-504.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Introduction. Moore - 1992 - Thought: Fordham University Quarterly 67 (4):363-365.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Schröder Ernst. Vorlesungen über die Algebra der Logik . Second edition, Volume I. A reprint of 427 with Schroder's corrections. Chelsea Publishing Company, Bronx 1966, IX + 721 pp. [REVIEW]Paul Bernays - 1975 - Journal of Symbolic Logic 40 (4):609-614.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (3 other versions)Russell's Leibniz Notebook.Richard T. W. Arthur & Nicholas Griffin - 2017 - Russell: The Journal of Bertrand Russell Studies 37 (1).
    In preparation for his lectures on Leibniz delivered in Cambridge in Lent Term 1899, Russell started in the summer of 1898 to keep notes on writings by and about Leibniz in a large notebook of the type he commonly used for notetaking at this time. This article prints, with annotation, all the material on Leibniz in that notebook.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • MacColl’s influences on Peirce and Schröder.Irving H. Anellis - 2011 - Philosophia Scientiae 15:97-128.
    Les contributions à la logique de MacColl et Charles Sanders Peirce (1839-1914) ont été les deux plus profondes influences sur le travail de Ernst Schröder (1841-1902) en logique algébrique. Dans son Vorlesungen über dieAlgebra der Logik, Schröder a cité MacColl comme l’un de ses précurseurs les plus importants. Schröder a comparé les travaux de Peirce avec les premières parties de la série d’articles intitulés « The calculus of equivalent statements » que MacColl publie entre 1877 et 1880. Schröder a attribué (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Genealogy of Disjunction.Ernest W. Adams & R. E. Jennings - 1996 - Philosophical Review 105 (1):87.
    This book is less about disjunction than about the English word ‘or’, and it is less for than against formal logicians—more exactly, against those who maintain that formal logic can be applied in certain ways to the evaluation of reasoning formulated in ordinary English. Nevertheless, there are many things to interest such of those persons who are willing to overlook the frequent animadversions directed against their kind in the book, and this review will concentrate on them.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • An Introduction to Symbolic Logic.Susanne K. Langer, R. Feys, Alfred Tarski, Willard Van Orman Quine & Hans Reichenbach - 1949 - Zeitschrift für Philosophische Forschung 3 (4):604-607.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Grundzüge der theoretischen Logik.D. Hilbert & W. Ackermann - 1928 - Annalen der Philosophie Und Philosophischen Kritik 7:157-157.
    Download  
     
    Export citation  
     
    Bookmark   210 citations  
  • (1 other version)A Treatise of Formal Logic, Its Evolution and Main Branches, with Its Relations to Mathematics and Philosophy.Jörgen Jörgensen - 1931 - Erkenntnis 2 (1):467-468.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Iconicity in mathematical notation: commutativity and symmetry.Theresa Wege, Sophie Batchelor, Matthew Inglis, Honali Mistry & Dirk Schlimm - 2020 - Journal of Numerical Cognition 3 (6):378-392.
    Mathematical notation includes a vast array of signs. Most mathematical signs appear to be symbolic, in the sense that their meaning is arbitrarily related to their visual appearance. We explored the hypothesis that mathematical signs with iconic aspects—those which visually resemble in some way the concepts they represent—offer a cognitive advantage over those which are purely symbolic. An early formulation of this hypothesis was made by Christine Ladd in 1883 who suggested that symmetrical signs should be used to convey commutative (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations