Switch to: Citations

Add references

You must login to add references.
  1. Rank-initial embeddings of non-standard models of set theory.Paul Kindvall Gorbow - 2020 - Archive for Mathematical Logic 59 (5-6):517-563.
    A theoretical development is carried to establish fundamental results about rank-initial embeddings and automorphisms of countable non-standard models of set theory, with a keen eye for their sets of fixed points. These results are then combined into a “geometric technique” used to prove several results about countable non-standard models of set theory. In particular, back-and-forth constructions are carried out to establish various generalizations and refinements of Friedman’s theorem on the existence of rank-initial embeddings between countable non-standard models of the fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   330 citations  
  • Models with compactness properties relative to an admissible language.J. P. Ressayre - 1977 - Annals of Mathematical Logic 11 (1):31.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Models of set theory with definable ordinals.Ali Enayat - 2005 - Archive for Mathematical Logic 44 (3):363-385.
    A DO model (here also referred to a Paris model) is a model of set theory all of whose ordinals are first order definable in . Jeffrey Paris (1973) initiated the study of DO models and showed that (1) every consistent extension T of ZF has a DO model, and (2) for complete extensions T, T has a unique DO model up to isomorphism iff T proves V=OD. Here we provide a comprehensive treatment of Paris models. Our results include the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)Set Theory.T. Jech - 2005 - Bulletin of Symbolic Logic 11 (2):243-245.
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • (1 other version)Model Theory.C. C. Chang & H. Jerome Keisler - 1992 - Studia Logica 51 (1):154-155.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • (1 other version)Model Theory.Michael Makkai, C. C. Chang & H. J. Keisler - 1991 - Journal of Symbolic Logic 56 (3):1096.
    Download  
     
    Export citation  
     
    Bookmark   411 citations  
  • Models with second order properties II. Trees with no undefined branches.Saharon Shelah - 1978 - Annals of Mathematical Logic 14 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Elementary extensions of countable models of set theory.John E. Hutchinson - 1976 - Journal of Symbolic Logic 41 (1):139-145.
    We prove the following extension of a result of Keisler and Morley. Suppose U is a countable model of ZFC and c is an uncountable regular cardinal in U. Then there exists an elementary extension of U which fixes all ordinals below c, enlarges c, and either (i) contains or (ii) does not contain a least new ordinal. Related results are discussed.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Toward model theory through recursive saturation.John Stewart Schlipf - 1978 - Journal of Symbolic Logic 43 (2):183-206.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)An Introduction to Recursively Saturated and Resplendent Models.Jon Barwise & John Schlipf - 1982 - Journal of Symbolic Logic 47 (2):440-440.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A guide to the identification of admissible sets above structures.John S. Schlipf - 1977 - Annals of Mathematical Logic 12 (2):151.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Nonstandard definability.Stuart T. Smith - 1989 - Annals of Pure and Applied Logic 42 (1):21-43.
    We investigate the notion of definability with respect to a full satisfaction class σ for a model M of Peano arithmetic. It is shown that the σ-definable subsets of M always include a class which provides a satisfaction definition for standard formulas. Such a class is necessarily proper, therefore there exist recursively saturated models with no full satisfaction classes. Nonstandard extensions of overspill and recursive saturation are utilized in developing a criterion for nonstandard definability. Finally, these techniques yield some information (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations