Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics.Roger Penrose - 1989 - New York: Oxford University Press.
    Winner of the Wolf Prize for his contribution to our understanding of the universe, Penrose takes on the question of whether artificial intelligence will ever ...
    Download  
     
    Export citation  
     
    Bookmark   579 citations  
  • Categories for the Working Mathematician.Saunders Maclane - 1971 - Springer.
    Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe­ maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions.Martin Davis (ed.) - 1965 - Hewlett, NY, USA: Dover Publication.
    "A valuable collection both for original source material as well as historical formulations of current problems."-- The Review of Metaphysics "Much more than a mere collection of papers . . . a valuable addition to the literature."-- Mathematics of Computation An anthology of fundamental papers on undecidability and unsolvability by major figures in the field, this classic reference opens with Godel's landmark 1931 paper demonstrating that systems of logic cannot admit proofs of all true assertions of arithmetic. Subsequent papers by (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • A Logical Journey: From Gödel to Philosophy.Hao Wang - 1996 - Bradford.
    Hao Wang was one of the few confidants of the great mathematician and logician Kurt Gödel. _A Logical Journey_ is a continuation of Wang's _Reflections on Gödel_ and also elaborates on discussions contained in _From Mathematics to Philosophy_. A decade in preparation, it contains important and unfamiliar insights into Gödel's views on a wide range of issues, from Platonism and the nature of logic, to minds and machines, the existence of God, and positivism and phenomenology. The impact of Gödel's theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • From Mathematics to Philosophy.Hao Wang - 1974 - London and Boston: Routledge.
    First published in 1974. Despite the tendency of contemporary analytic philosophy to put logic and mathematics at a central position, the author argues it failed to appreciate or account for their rich content. Through discussions of such mathematical concepts as number, the continuum, set, proof and mechanical procedure, the author provides an introduction to the philosophy of mathematics and an internal criticism of the then current academic philosophy. The material presented is also an illustration of a new, more general method (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • From Mathematics to Philosophy.Hao Wang - 1975 - British Journal for the Philosophy of Science 26 (2):170-174.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • The World of Mathematics.James Newman - 1956
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Categorical Foundations and Foundations of Category Theory.Solomon Feferman - 1980 - In R. E. Butts & J. Hintikka (eds.), Logic, Foundations of Mathematics, and Computability Theory. Springer. pp. 149-169.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The unfolding of non-finitist arithmetic.Solomon Feferman & Thomas Strahm - 2000 - Annals of Pure and Applied Logic 104 (1-3):75-96.
    The unfolding of schematic formal systems is a novel concept which was initiated in Feferman , Gödel ’96, Lecture Notes in Logic, Springer, Berlin, 1996, pp. 3–22). This paper is mainly concerned with the proof-theoretic analysis of various unfolding systems for non-finitist arithmetic . In particular, we examine two restricted unfoldings and , as well as a full unfolding, . The principal results then state: is equivalent to ; is equivalent to ; is equivalent to . Thus is proof-theoretically equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Beyond the doubting of a shadow.Roger Penrose - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2:89-129.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Penrose's new argument.Per Lindström - 2001 - Journal of Philosophical Logic 30 (3):241-250.
    It has been argued, by Penrose and others, that Gödel's proof of his first incompleteness theorem shows that human mathematics cannot be captured by a formal system F: the Gödel sentence G(F) of F can be proved by a (human) mathematician but is not provable in F. To this argment it has been objected that the mathematician can prove G(F) only if (s)he can prove that F is consistent, which is unlikely if F is complicated. Penrose has invented a new (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Foundations of Constructive Mathematics.Michael J. Beeson - 1932 - Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Which number theoretic problems can be solved in recursive progressions on Π1 1-paths through O?G. Kreisel - 1972 - Journal of Symbolic Logic 37 (2):311-334.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Foundations of Constructive Mathematics.Michael J. Beeson - 1987 - Studia Logica 46 (4):398-399.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Remarks on Penrose’s “New Argument”.Per Lindström - 2006 - Journal of Philosophical Logic 35 (3):231-237.
    It is commonly agreed that the well-known Lucas-Penrose arguments and even Penrose's 'new argument' in [Penrose, R. (1994): Shadows of the Mind, Oxford University Press] are inconclusive. It is, perhaps, less clear exactly why at least the latter is inconclusive. This note continues the discussion in [Lindström, P. (2001): Penrose's new argument, J. Philos. Logic 30, 241-250; Shapiro, S.(2003): Mechanism, truth, and Penrose's new argument, J. Philos. Logic 32, 19-42] and elsewhere of this question.
    Download  
     
    Export citation  
     
    Bookmark   7 citations