Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)An omniscience principle, the König Lemma and the Hahn-Banach theorem.Hajime Ishihara - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (3):237-240.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)An omniscience principle, the König Lemma and the Hahn‐Banach theorem.Hajime Ishihara - 1990 - Mathematical Logic Quarterly 36 (3):237-240.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Between constructive mathematics and PROLOG.Gerhard Jäger - 1991 - Archive for Mathematical Logic 30 (5-6):297-310.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Does category theory provide a framework for mathematical structuralism?Geoffrey Hellman - 2003 - Philosophia Mathematica 11 (2):129-157.
    Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis-a-vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell's many-topoi view and modal-structuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Hilbert's ɛ-operator and classical logic.J. L. Bell - 1993 - Journal of Philosophical Logic 22 (1):1 - 18.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Choice and independence of premise rules in intuitionistic set theory.Emanuele Frittaion, Takako Nemoto & Michael Rathjen - 2023 - Annals of Pure and Applied Logic 174 (9):103314.
    Download  
     
    Export citation  
     
    Bookmark  
  • History and Philosophy of Constructive Type Theory.Giovanni Sommaruga - 2000 - Dordrecht, Netherland: Springer.
    A comprehensive survey of Martin-Löf's constructive type theory, considerable parts of which have only been presented by Martin-Löf in lecture form or as part of conference talks. Sommaruga surveys the prehistory of type theory and its highly complex development through eight different stages from 1970 to 1995. He also provides a systematic presentation of the latest version of the theory, as offered by Martin-Löf at Leiden University in Fall 1993. This presentation gives a fuller and updated account of the system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Advances in Modal Logic, Vol. 13.Nicola Olivetti & Rineke Verbrugge (eds.) - 2020 - College Publications.
    Download  
     
    Export citation  
     
    Bookmark  
  • The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • C. S. Peirce and Intersemiotic Translation.Joao Queiroz & Daniella Aguiar - 2015 - In Peter Pericles Trifonas (ed.), International Handbook of Semiotics. Dordrecht: Springer. pp. 201-215.
    Intersemiotic translation (IT) was defined by Roman Jakobson (The Translation Studies Reader, Routledge, London, p. 114, 2000) as “transmutation of signs”—“an interpretation of verbal signs by means of signs of nonverbal sign systems.” Despite its theoretical relevance, and in spite of the frequency in which it is practiced, the phenomenon remains virtually unexplored in terms of conceptual modeling, especially from a semiotic perspective. Our approach is based on two premises: (i) IT is fundamentally a semiotic operation process (semiosis) and (ii) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Constructive mathematics.Douglas Bridges - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Reasoning about partial functions with the aid of a computer.William M. Farmer - 1995 - Erkenntnis 43 (3):279 - 294.
    Partial functions are ubiquitous in both mathematics and computer science. Therefore, it is imperative that the underlying logical formalism for a general-purpose mechanized mathematics system provide strong support for reasoning about partial functions. Unfortunately, the common logical formalisms — first-order logic, type theory, and set theory — are usually only adequate for reasoning about partial functionsin theory. However, the approach to partial functions traditionally employed by mathematicians is quite adequatein practice. This paper shows how the traditional approach to partial functions (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Beyond the metrological viewpoint.Jean Baccelli - 2020 - Studies in History and Philosophy of Science Part A 1:56-61.
    The representational theory of measurement has long been the central paradigm in the philosophy of measurement. Such is not the case anymore, partly under the influence of the critique according to which RTM offers too poor descriptions of the measurement procedures actually followed in science. This can be called the metrological critique of RTM. I claim that the critique is partly irrelevant. This is because, in general, RTM is not in the business of describing measurement procedures, be it in idealized (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • All the mathematics in the world: logical validity and classical set theory.David Charles McCarty - 2017 - Philosophical Problems in Science 63:5-29.
    A recognizable topological model construction shows that any consistent principles of classical set theory, including the validity of the law of the excluded third, together with a standard class theory, do not suffice to demonstrate the general validity of the law of the excluded third. This result calls into question the classical mathematician's ability to offer solid justifications for the logical principles he or she favors.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computability of Minimizers and Separating Hyperplanes.Kam-Chau Wong - 1996 - Mathematical Logic Quarterly 42 (1):564-568.
    We prove in recursive analysis an existence theorem for computable minimizers of convex computable continuous real-valued functions, and a computable separation theorem for convex sets in ℝm.
    Download  
     
    Export citation  
     
    Bookmark  
  • The strength of some Martin-Löf type theories.Edward Griffor & Michael Rathjen - 1994 - Archive for Mathematical Logic 33 (5):347-385.
    One objective of this paper is the determination of the proof-theoretic strength of Martin-Löf's type theory with a universe and the type of well-founded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with Δ 2 1 comprehension and bar induction. As Martin-Löf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Extending constructive operational set theory by impredicative principles.Andrea Cantini - 2011 - Mathematical Logic Quarterly 57 (3):299-322.
    We study constructive set theories, which deal with operations applying both to sets and operations themselves. Our starting point is a fully explicit, finitely axiomatized system ESTE of constructive sets and operations, which was shown in 10 to be as strong as PA. In this paper we consider extensions with operations, which internally represent description operators, unbounded set quantifiers and local fixed point operators. We investigate the proof theoretic strength of the resulting systems, which turn out to be impredicative . (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Compactness notions for an apartness space.Douglas S. Bridges - 2012 - Archive for Mathematical Logic 51 (5-6):517-534.
    Two new notions of compactness, each classically equivalent to the standard classical one of sequential compactness, for apartness spaces are examined within Bishop-style constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Godel's program for new axioms: Why, where, how and what?Solomon Feferman - unknown
    From 1931 until late in his life (at least 1970) Godel called for the pursuit of new axioms for mathematics to settle both undecided number-theoretical propositions (of the form obtained in his incompleteness results) and undecided set-theoretical propositions (in particular CH). As to the nature of these, Godel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the status of proofs by contradiction in the seventeenth century.Paolo Mancosu - 1991 - Synthese 88 (1):15 - 41.
    In this paper I show that proofs by contradiction were a serious problem in seventeenth century mathematics and philosophy. Their status was put into question and positive mathematical developments emerged from such reflections. I analyse how mathematics, logic, and epistemology are intertwined in the issue at hand. The mathematical part describes Cavalieri's and Guldin's mathematical programmes of providing a development of parts of geometry free of proofs by contradiction. The logical part shows how the traditional Aristotelean doctrine that perfect demonstrations (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Λ-terms, logic, determiners and quantifiers.Fairouz Kamareddine - 1992 - Journal of Logic, Language and Information 1 (1):79-103.
    In this paper, a theory T H based on combining type freeness with logic is introduced and is then used to build a theory of properties which is applied to determiners and quantifiers.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Free Logics are Cut-Free.Andrzej Indrzejczak - 2021 - Studia Logica 109 (4):859-886.
    The paper presents a uniform proof-theoretic treatment of several kinds of free logic, including the logics of existence and definedness applied in constructive mathematics and computer science, and called here quasi-free logics. All free and quasi-free logics considered are formalised in the framework of sequent calculus, the latter for the first time. It is shown that in all cases remarkable simplifications of the starting systems are possible due to the special rule dealing with identity and existence predicate. Cut elimination is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Method and Proof.Jeremy Avigad - 2006 - Synthese 153 (1):105-159.
    On a traditional view, the primary role of a mathematical proof is to warrant the truth of the resulting theorem. This view fails to explain why it is very often the case that a new proof of a theorem is deemed important. Three case studies from elementary arithmetic show, informally, that there are many criteria by which ordinary proofs are valued. I argue that at least some of these criteria depend on the methods of inference the proofs employ, and that (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)Scientific Pluralism.Stephen H. Kellert, Helen E. Longino & C. Kenneth Waters (eds.) - 1956 - Univ of Minnesota Press.
    Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science?
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Effectiveness in RPL, with applications to continuous logic.Farzad Didehvar, Kaveh Ghasemloo & Massoud Pourmahdian - 2010 - Annals of Pure and Applied Logic 161 (6):789-799.
    In this paper, we introduce a foundation for computable model theory of rational Pavelka logic and continuous logic, and prove effective versions of some related theorems in model theory. We show how to reduce continuous logic to rational Pavelka logic. We also define notions of computability and decidability of a model for logics with computable, but uncountable, set of truth values; we show that provability degree of a formula with respect to a linear theory is computable, and use this to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Friedman‐Translation for Martin‐Löf's Type Theory.Erik Palmgren - 1995 - Mathematical Logic Quarterly 41 (3):314-326.
    In this note we show that Friedman's syntactic translation for intuitionistic logical systems can be carried over to Martin-Löf's type theory, inlcuding universes provided some restrictions are made. Using this translation we show that the theory is closed under a higher type version of Markov's rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory.Ray-Ming Chen & Michael Rathjen - 2012 - Archive for Mathematical Logic 51 (7-8):789-818.
    A variant of realizability for Heyting arithmetic which validates Church’s thesis with uniqueness condition, but not the general form of Church’s thesis, was introduced by Lifschitz (Proc Am Math Soc 73:101–106, 1979). A Lifschitz counterpart to Kleene’s realizability for functions (in Baire space) was developed by van Oosten (J Symb Log 55:805–821, 1990). In that paper he also extended Lifschitz’ realizability to second order arithmetic. The objective here is to extend it to full intuitionistic Zermelo–Fraenkel set theory, IZF. The machinery (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paradox and Potential Infinity.Charles McCarty - 2013 - Journal of Philosophical Logic 42 (1):195-219.
    We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In memory of Torkel Franzén.Solomon Feferman - unknown
    1. Logic, determinism and free will. The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological and logical character; my concern here is to limit attention to two arguments from logic. To begin with, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein and finitism.Mathieu Marion - 1995 - Synthese 105 (2):141 - 176.
    In this paper, elementary but hitherto overlooked connections are established between Wittgenstein's remarks on mathematics, written during his transitional period, and free-variable finitism. After giving a brief description of theTractatus Logico-Philosophicus on quantifiers and generality, I present in the first section Wittgenstein's rejection of quantification theory and his account of general arithmetical propositions, to use modern jargon, as claims (as opposed to statements). As in Skolem's primitive recursive arithmetic and Goodstein's equational calculus, Wittgenstein represented generality by the use of free (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Definedness.Solomon Feferman - 1995 - Erkenntnis 43 (3):295 - 320.
    Questions of definedness are ubiquitous in mathematics. Informally, these involve reasoning about expressions which may or may not have a value. This paper surveys work on logics in which such reasoning can be carried out directly, especially in computational contexts. It begins with a general logic of partial terms, continues with partial combinatory and lambda calculi, and concludes with an expressively rich theory of partial functions and polymorphic types, where termination of functional programs can be established in a natural way.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Deflationism beyond arithmetic.Kentaro Fujimoto - 2019 - Synthese 196 (3):1045-1069.
    The conservativeness argument poses a dilemma to deflationism about truth, according to which a deflationist theory of truth must be conservative but no adequate theory of truth is conservative. The debate on the conservativeness argument has so far been framed in a specific formal setting, where theories of truth are formulated over arithmetical base theories. I will argue that the appropriate formal setting for evaluating the conservativeness argument is provided not by theories of truth over arithmetic but by those over (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Too simple solutions of hard problems.Peter M. Schuster - 2010 - Nordic Journal of Philosophical Logic 6 (2):138-146.
    Even after yet another grand conjecture has been proved or refuted, any omniscience principle that had trivially settled this question is just as little acceptable as before. The significance of the constructive enterprise is therefore not affected by any gain of knowledge. In particular, there is no need to adapt weak counterexamples to mathematical progress.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π 1 -equivalent to KP.Kentaro Sato & Rico Zumbrunnen - 2015 - Annals of Pure and Applied Logic 166 (2):121-186.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Étude constructive de problèmes de topologie pour les réels irrationnels.Mohamed Khalouani, Salah Labhalla & Et Henri Lombardi - 1999 - Mathematical Logic Quarterly 45 (2):257-288.
    We study in a constructive manner some problems of topology related to the set Irr of irrational reals. The constructive approach requires a strong notion of an irrational number; constructively, a real number is irrational if it is clearly different from any rational number. We show that the set Irr is one-to-one with the set Dfc of infinite developments in continued fraction . We define two extensions of Irr, one, called Dfc1, is the set of dfc of rationals and irrationals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The proper explanation of intuitionistic logic: on Brouwer's demonstration of the Bar Theorem.Mark van Atten & Göran Sundholm - 2008 - In Mark van Atten, Pascal Boldini, Michel Bourdeau & Gerhard Heinzmann (eds.), One Hundred Years of Intuitionism : The Cerisy Conference. Birkhäuser Basel. pp. 60-77.
    Brouwer's demonstration of his Bar Theorem gives rise to provocative questions regarding the proper explanation of the logical connectives within intuitionistic and constructivist frameworks, respectively, and, more generally, regarding the role of logic within intuitionism. It is the purpose of the present note to discuss a number of these issues, both from an historical, as well as a systematic point of view.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • About and Around Computing Over the Reals.Solomon Feferman - unknown
    1. One theory or many? In 2004 a very interesting and readable article by Lenore Blum, entitled “Computing over the reals: Where Turing meets Newton,” appeared in the Notices of the American Mathematical Society. It explained a basic model of computation over the reals due to Blum, Michael Shub and Steve Smale (1989), subsequently exposited at length in their influential book, Complexity and Real Computation (1997), coauthored with Felipe Cucker. The ‘Turing’ in the title of Blum’s article refers of course (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Axioms for determinateness and truth.Solomon Feferman - 2008 - Review of Symbolic Logic 1 (2):204-217.
    elaboration of the last part of my Tarski Lecture, “Truth unbound”, UC Berkeley, 3 April 2006, and of the lecture, “A nicer formal theory of non-hierarchical truth”, Workshop on Mathematical Methods in Philosophy, Banff , 18-23 Feb. 2007.
    Download  
     
    Export citation  
     
    Bookmark   30 citations