Switch to: Citations

Add references

You must login to add references.
  1. Scattered and hereditarily irresolvable spaces in modal logic.Guram Bezhanishvili & Patrick J. Morandi - 2010 - Archive for Mathematical Logic 49 (3):343-365.
    When we interpret modal ◊ as the limit point operator of a topological space, the Gödel-Löb modal system GL defines the class Scat of scattered spaces. We give a partition of Scat into α-slices S α , where α ranges over all ordinals. This provides topological completeness and definability results for extensions of GL. In particular, we axiomatize the modal logic of each ordinal α, thus obtaining a simple proof of the Abashidze–Blass theorem. On the other hand, when we interpret (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Kripke semantics for provability logic GLP.Lev D. Beklemishev - 2010 - Annals of Pure and Applied Logic 161 (6):756-774.
    A well-known polymodal provability logic inlMMLBox due to Japaridze is complete w.r.t. the arithmetical semantics where modalities correspond to reflection principles of restricted logical complexity in arithmetic. This system plays an important role in some recent applications of provability algebras in proof theory. However, an obstacle in the study of inlMMLBox is that it is incomplete w.r.t. any class of Kripke frames. In this paper we provide a complete Kripke semantics for inlMMLBox . First, we isolate a certain subsystem inlMMLBox (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On strong provability predicates and the associated modal logics.Konstantin N. Ignatiev - 1993 - Journal of Symbolic Logic 58 (1):249-290.
    PA is Peano Arithmetic. Pr(x) is the usual Σ1-formula representing provability in PA. A strong provability predicate is a formula which has the same properties as Pr(·) but is not Σ1. An example: Q is ω-provable if PA + ¬ Q is ω-inconsistent (Boolos [4]). In [5] Dzhaparidze introduced a joint provability logic for iterated ω-provability and obtained its arithmetical completeness. In this paper we prove some further modal properties of Dzhaparidze's logic, e.g., the fixed point property and the Craig (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Provability and Interpretability Logics with Restricted Realizations.Thomas F. Icard & Joost J. Joosten - 2012 - Notre Dame Journal of Formal Logic 53 (2):133-154.
    The provability logic of a theory $T$ is the set of modal formulas, which under any arithmetical realization are provable in $T$. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set $\Gamma$. We make an analogous modification for interpretability logics. We first study provability logics with restricted realizations and show that for various natural candidates of $T$ and restriction set $\Gamma$, the result is the logic of linear frames. However, for the theory Primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provability Interpretations of Modal Logic.Robert M. Solovay - 1981 - Journal of Symbolic Logic 46 (3):661-662.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • An essay in classical modal logic.Krister Segerberg - 1971 - Uppsala,: Filosofiska föreningen och Filosofiska institutionen vid Uppsala universitet.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On Provability Logics with Linearly Ordered Modalities.Lev D. Beklemishev, David Fernández-Duque & Joost J. Joosten - 2014 - Studia Logica 102 (3):541-566.
    We introduce the logics GLP Λ, a generalization of Japaridze’s polymodal provability logic GLP ω where Λ is any linearly ordered set representing a hierarchy of provability operators of increasing strength. We shall provide a reduction of these logics to GLP ω yielding among other things a finitary proof of the normal form theorem for the variable-free fragment of GLP Λ and the decidability of GLP Λ for recursive orderings Λ. Further, we give a restricted axiomatization of the variable-free fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Models of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2013 - Journal of Symbolic Logic 78 (2):543-561.
    For any ordinal $\Lambda$, we can define a polymodal logic $\mathsf{GLP}_\Lambda$, with a modality $[\xi]$ for each $\xi < \Lambda$. These represent provability predicates of increasing strength. Although $\mathsf{GLP}_\Lambda$ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted $\mathsf{GLP}^0_\omega$. Later, Icard defined a topological model for $\mathsf{GLP}^0_\omega$ which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary $\Lambda$. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Topological completeness of the provability logic GLP.Lev Beklemishev & David Gabelaia - 2013 - Annals of Pure and Applied Logic 164 (12):1201-1223.
    Provability logic GLP is well-known to be incomplete w.r.t. Kripke semantics. A natural topological semantics of GLP interprets modalities as derivative operators of a polytopological space. Such spaces are called GLP-spaces whenever they satisfy all the axioms of GLP. We develop some constructions to build nontrivial GLP-spaces and show that GLP is complete w.r.t. the class of all GLP-spaces.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Hyperations, Veblen progressions and transfinite iteration of ordinal functions.David Fernández-Duque & Joost J. Joosten - 2013 - Annals of Pure and Applied Logic 164 (7-8):785-801.
    Ordinal functions may be iterated transfinitely in a natural way by taking pointwise limits at limit stages. However, this has disadvantages, especially when working in the class of normal functions, as pointwise limits do not preserve normality. To this end we present an alternative method to assign to each normal function f a family of normal functions Hyp[f]=〈fξ〉ξ∈OnHyp[f]=〈fξ〉ξ∈On, called its hyperation, in such a way that f0=idf0=id, f1=ff1=f and fα+β=fα∘fβfα+β=fα∘fβ for all α, β.Hyperations are a refinement of the Veblen hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Infinitary combinatorics and modal logic.Andreas Blass - 1990 - Journal of Symbolic Logic 55 (2):761-778.
    We show that the modal propositional logic G, originally introduced to describe the modality "it is provable that", is also sound for various interpretations using filters on ordinal numbers, for example the end-segment filters, the club filters, or the ineffable filters. We also prove that G is complete for the interpretation using end-segment filters. In the case of club filters, we show that G is complete if Jensen's principle □ κ holds for all $\kappa ; on the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Provability algebras and proof-theoretic ordinals, I.Lev D. Beklemishev - 2004 - Annals of Pure and Applied Logic 128 (1-3):103-123.
    We suggest an algebraic approach to proof-theoretic analysis based on the notion of graded provability algebra, that is, Lindenbaum boolean algebra of a theory enriched by additional operators which allow for the structure to capture proof-theoretic information. We use this method to analyze Peano arithmetic and show how an ordinal notation system up to 0 can be recovered from the corresponding algebra in a canonical way. This method also establishes links between proof-theoretic ordinal analysis and the work which has been (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On Topological Models of GLP.Lev Beklemishev, Guram Bezhanishvili & Thomas Icard - 2010 - In Ralf Schindler (ed.), Ways of Proof Theory. De Gruyter. pp. 135-156.
    Download  
     
    Export citation  
     
    Bookmark   6 citations