Switch to: References

Add citations

You must login to add citations.
  1. Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Avicenna on Syllogisms Composed of Opposite Premises.Behnam Zolghadr - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 433-442.
    This article is about Avicenna’s account of syllogisms comprising opposite premises. We examine the applications and the truth conditions of these syllogisms. Finally, we discuss the relation between these syllogisms and the principle of non-contradiction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Modalities Save Naive Set Theory?Peter Fritz, Harvey Lederman, Tiankai Liu & Dana Scott - 2018 - Review of Symbolic Logic 11 (1):21-47.
    To the memory of Prof. Grigori Mints, Stanford UniversityBorn: June 7, 1939, St. Petersburg, RussiaDied: May 29, 2014, Palo Alto, California.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intermediate Logics and the de Jongh property.Dick Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
    We prove that all extensions of Heyting Arithmetic with a logic that has the finite frame property possess the de Jongh property.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Formulas of one propositional variable in intuitionistic logic with the Solovay modality.Leo Esakia & Revaz Grigolia - 2008 - Logic and Logical Philosophy 17 (1-2):111-127.
    A description of the free cyclic algebra over the variety of Solovay algebras, as well as over its pyramid locally finite subvarieties is given.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpolation and the Interpretability Logic of PA.Evan Goris - 2006 - Notre Dame Journal of Formal Logic 47 (2):179-195.
    In this paper we will be concerned with the interpretability logic of PA and in particular with the fact that this logic, which is denoted by ILM, does not have the interpolation property. An example for this fact seems to emerge from the fact that ILM cannot express Σ₁-ness. This suggests a way to extend the expressive power of interpretability logic, namely, by an additional operator for Σ₁-ness, which might give us a logic with the interpolation property. We will formulate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Principles of Interpretability.Mladen Vuković - 1999 - Notre Dame Journal of Formal Logic 40 (2):227-235.
    A generalized Veltman semantics developed by de Jongh is used to investigate correspondences between several extensions of intepretability logic . In this paper we present some new results on independences.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The knower paradox in the light of provability interpretations of modal logic.Paul Égré - 2004 - Journal of Logic, Language and Information 14 (1):13-48.
    This paper propounds a systematic examination of the link between the Knower Paradox and provability interpretations of modal logic. The aim of the paper is threefold: to give a streamlined presentation of the Knower Paradox and related results; to clarify the notion of a syntactical treatment of modalities; finally, to discuss the kind of solution that modal provability logic provides to the Paradox. I discuss the respective strength of different versions of the Knower Paradox, both in the framework of first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Solutions to the Knower Paradox in the Light of Haack’s Criteria.Mirjam de Vos, Rineke Verbrugge & Barteld Kooi - 2023 - Journal of Philosophical Logic 52 (4):1101-1132.
    The knower paradox states that the statement ‘We know that this statement is false’ leads to inconsistency. This article presents a fresh look at this paradox and some well-known solutions from the literature. Paul Égré discusses three possible solutions that modal provability logic provides for the paradox by surveying and comparing three different provability interpretations of modality, originally described by Skyrms, Anderson, and Solovay. In this article, some background is explained to clarify Égré’s solutions, all three of which hinge on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Remarks on Assertion and Proof.Massimliano Carrara - 2021 - Journal of Applied Logics 8 (21):321-328.
    In our introduction we make some remarks on the main topics of this issue: assertion and proof. We briefly describe how each of the papers in the present publication has contributed from either different or complementary perspectives to the logical reflection on assertion and proof, while also specifying the relation between them.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is ‘Knowing that P’ Identical with ‘Knowing that “P” Is True’?Changsheng Lai - 2021 - Philosophia 48 (3):1075-1092.
    It is epistemological orthodoxy that the object of propositional knowledge is the truth of propositions. This traditional view is based on what I call the ‘KT-schema’, viz, ‘S knows that p, iff, S knows that “p” is true’. The purpose of this paper is to reject the KT-schema. By showing the paradoxical upshot of the KT-schema and providing counterexamples to the KT-schema, this paper argues that ‘knowing that p’ is more than ‘knowing that “p” is true’. Consequently, we shall rethink (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The omega-rule interpretation of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2018 - Annals of Pure and Applied Logic 169 (4):333-371.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Liar-type Paradoxes and the Incompleteness Phenomena.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Philosophical Logic 45 (4):381-398.
    We define a liar-type paradox as a consistent proposition in propositional modal logic which is obtained by attaching boxes to several subformulas of an inconsistent proposition in classical propositional logic, and show several famous paradoxes are liar-type. Then we show that we can generate a liar-type paradox from any inconsistent proposition in classical propositional logic and that undecidable sentences in arithmetic can be obtained from the existence of a liar-type paradox. We extend these results to predicate logic and discuss Yablo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpolation and implicit definability in extensions of the provability logic.Larisa Maksimova - 2008 - Logic and Logical Philosophy 17 (1-2):129-142.
    The provability logic GL was in the field of interest of A.V. Kuznetsov, who had also formulated its intuitionistic analog—the intuitionisticprovability logic—and investigated these two logics and their extensions.In the present paper, different versions of interpolation and of the Bethproperty in normal extensions of the provability logic GL are considered. Itis proved that in a large class of extensions of GL almost all versions of interpolation and of the Beth propertyare equivalent. It follows that in finite slice logics over GL (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Variations on a Montagovian theme.Wolfgang Schwarz - 2013 - Synthese 190 (16):3377-3395.
    What are the objects of knowledge, belief, probability, apriority or analyticity? For at least some of these properties, it seems plausible that the objects are sentences, or sentence-like entities. However, results from mathematical logic indicate that sentential properties are subject to severe formal limitations. After surveying these results, I argue that they are more problematic than often assumed, that they can be avoided by taking the objects of the relevant property to be coarse-grained (“sets of worlds”) propositions, and that all (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Simple Proof of Arithmetical Completeness for $\Pi_1$ -Conservativity Logic.Giorgi Japaridze - 1994 - Notre Dame Journal of Formal Logic 35 (3):346-354.
    Hájek and Montagna proved that the modal propositional logic ILM is the logic of -conservativity over sound theories containing I (PA with induction restricted to formulas). I give a simpler proof of the same fact.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The modal logic of provability. The sequential approach.Giovanni Sambin & Silvio Valentini - 1982 - Journal of Philosophical Logic 11 (3):311 - 342.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Arithmetical Soundness and Completeness for $$\varvec{\Sigma }_{\varvec{2}}$$ Numerations.Taishi Kurahashi - 2018 - Studia Logica 106 (6):1181-1196.
    We prove that for each recursively axiomatized consistent extension T of Peano Arithmetic and \, there exists a \ numeration \\) of T such that the provability logic of the provability predicate \\) naturally constructed from \\) is exactly \ \rightarrow \Box p\). This settles Sacchetti’s problem affirmatively.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Arithmetical Completeness Theorem for Modal Logic $$mathsf{}$$.Taishi Kurahashi - 2018 - Studia Logica 106 (2):219-235.
    We prove that for any recursively axiomatized consistent extension T of Peano Arithmetic, there exists a \ provability predicate of T whose provability logic is precisely the modal logic \. For this purpose, we introduce a new bimodal logic \, and prove the Kripke completeness theorem and the uniform arithmetical completeness theorem for \.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The modal logic of Reverse Mathematics.Carl Mummert, Alaeddine Saadaoui & Sean Sovine - 2015 - Archive for Mathematical Logic 54 (3-4):425-437.
    The implication relationship between subsystems in Reverse Mathematics has an underlying logic, which can be used to deduce certain new Reverse Mathematics results from existing ones in a routine way. We use techniques of modal logic to formalize the logic of Reverse Mathematics into a system that we name s-logic. We argue that s-logic captures precisely the “logical” content of the implication and nonimplication relations between subsystems in Reverse Mathematics. We present a sound, complete, decidable, and compact tableau-style deductive system (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A system of natural deduction for GL.Gianluigi Bellin - 1985 - Theoria 51 (2):89-114.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Informal provability and dialetheism.Pawel Pawlowski & Rafal Urbaniak - 2023 - Theoria 89 (2):204-215.
    According to the dialetheist argument from the inconsistency of informal mathematics, the informal version of the Gödelian argument leads us to a true contradiction. On one hand, the dialetheist argues, we can prove that there is a mathematical claim that is neither provable nor refutable in informal mathematics. On the other, the proof of its unprovability is given in informal mathematics and proves that very sentence. We argue that the argument fails, because it relies on the unjustified and unlikely assumption (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Independent Axiomatizability of Quasi-Normal Modal Logics.Igor Gorbunov & Dmitry Shkatov - 2022 - Studia Logica 110 (5):1189-1217.
    We give a negative solution to the problem, posed by A. Chagrov and M. Zakharyaschev, of whether every quasi-normal propositional modal logic can be axiomatized by an independent set of axioms, with the inference rules of Substitution and Modus Ponens.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Context of Inference.Curtis Franks - 2018 - History and Philosophy of Logic 39 (4):365-395.
    There is an ambiguity in the concept of deductive validity that went unnoticed until the middle of the twentieth century. Sometimes an inference rule is called valid because its conclusion is a theorem whenever its premises are. But often something different is meant: The rule's conclusion follows from its premises even in the presence of other assumptions. In many logical environments, these two definitions pick out the same rules. But other environments are context-sensitive, and in these environments the second notion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Short Note on Essentially Σ1 Sentences.Franco Montagna & Duccio Pianigiani - 2013 - Logica Universalis 7 (1):103-111.
    Guaspari (J Symb Logic 48:777–789, 1983) conjectured that a modal formula is it essentially Σ1 (i.e., it is Σ1 under any arithmetical interpretation), if and only if it is provably equivalent to a disjunction of formulas of the form ${\square{B}}$ . This conjecture was proved first by A. Visser. Then, in (de Jongh and Pianigiani, Logic at Work: In Memory of Helena Rasiowa, Springer-Physica Verlag, Heidelberg-New York, pp. 246–255, 1999), the authors characterized essentially Σ1 formulas of languages including witness comparisons (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Modal Logic of Gödel Sentences.Hirohiko Kushida - 2010 - Journal of Philosophical Logic 39 (5):577 - 590.
    The modal logic of Gödel sentences, termed as GS, is introduced to analyze the logical properties of 'true but unprovable' sentences in formal arithmetic. The logic GS is, in a sense, dual to Grzegorczyk's Logic, where modality can be interpreted as 'true and provable'. As we show, GS and Grzegorczyk's Logic are, in fact, mutually embeddable. We prove Kripke completeness and arithmetical completeness for GS. GS is also an extended system of the logic of 'Essence and Accident' proposed by Marcos (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The de Jongh property for Basic Arithmetic.Mohammad Ardeshir & S. Mojtaba Mojtahedi - 2014 - Archive for Mathematical Logic 53 (7):881-895.
    We prove that Basic Arithmetic, BA, has the de Jongh property, i.e., for any propositional formula A(p 1,..., p n ) built up of atoms p 1,..., p n, BPC $${\vdash}$$ A(p 1,..., p n ) if and only if for all arithmetical sentences B 1,..., B n, BA $${\vdash}$$ A(B 1,..., B n ). The technique used in our proof can easily be applied to some known extensions of BA.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Models of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2013 - Journal of Symbolic Logic 78 (2):543-561.
    For any ordinal $\Lambda$, we can define a polymodal logic $\mathsf{GLP}_\Lambda$, with a modality $[\xi]$ for each $\xi < \Lambda$. These represent provability predicates of increasing strength. Although $\mathsf{GLP}_\Lambda$ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted $\mathsf{GLP}^0_\omega$. Later, Icard defined a topological model for $\mathsf{GLP}^0_\omega$ which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary $\Lambda$. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the logic of reducibility: Axioms and examples. [REVIEW]Karl-Georg Niebergall - 2000 - Erkenntnis 53 (1-2):27-61.
    This paper is an investigation into what could be a goodexplication of ``theory S is reducible to theory T''''. Ipresent an axiomatic approach to reducibility, which is developedmetamathematically and used to evaluate most of the definitionsof ``reducible'''' found in the relevant literature. Among these,relative interpretability turns out to be most convincing as ageneral reducibility concept, proof-theoreticalreducibility being its only serious competitor left. Thisrelation is analyzed in some detail, both from the point of viewof the reducibility axioms and of modal logic.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Provability, truth, and modal logic.George Boolos - 1980 - Journal of Philosophical Logic 9 (1):1 - 7.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rosser Provability and Normal Modal Logics.Taishi Kurahashi - 2020 - Studia Logica 108 (3):597-617.
    In this paper, we investigate Rosser provability predicates whose provability logics are normal modal logics. First, we prove that there exists a Rosser provability predicate whose provability logic is exactly the normal modal logic \. Secondly, we introduce a new normal modal logic \ which is a proper extension of \, and prove that there exists a Rosser provability predicate whose provability logic includes \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The polytopologies of transfinite provability logic.David Fernández-Duque - 2014 - Archive for Mathematical Logic 53 (3-4):385-431.
    Provability logics are modal or polymodal systems designed for modeling the behavior of Gödel’s provability predicate and its natural extensions. If Λ is any ordinal, the Gödel-Löb calculus GLPΛ contains one modality [λ] for each λ < Λ, representing provability predicates of increasing strength. GLPω has no non-trivial Kripke frames, but it is sound and complete for its topological semantics, as was shown by Icard for the variable-free fragment and more recently by Beklemishev and Gabelaia for the full logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An operational logic of proofs with positive and negative information.Duccio Luchi & Franco Montagna - 1999 - Studia Logica 63 (1):7-25.
    The logic of proofs was introduced by Artemov in order to analize the formalization of the concept of proof rather than the concept of provability. In this context, some operations on proofs play a very important role. In this paper, we investigate some very natural operations, paying attention not only to positive information, but also to negative information (i.e. information saying that something cannot be a proof). We give a formalization for a fragment of such a logic of proofs, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deterministic Logic of Informal Provability has no Finite Characterization.Pawel Pawlowski - 2021 - Journal of Logic, Language and Information 30 (4):805-817.
    Recently, in an ongoing debate about informal provability, non-deterministic logics of informal provability BAT and CABAT were developed to model the notion. CABAT logic is defined as an extension of BAT logics and itself does not have independent and decent semantics. The aim of the paper is to show that, semantically speaking, both logics are rather complex and they can be characterized by neither finitely many valued deterministic semantics nor possible word semantics including neighbourhood semantics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cut Elimination for GLS Using the Terminability of its Regress Process.Jude Brighton - 2016 - Journal of Philosophical Logic 45 (2):147-153.
    The system GLS, which is a modal sequent calculus system for the provability logic GL, was introduced by G. Sambin and S. Valentini in Journal of Philosophical Logic, 11, 311–342,, and in 12, 471–476,, the second author presented a syntactic cut-elimination proof for GLS. In this paper, we will use regress trees in order to present a simpler and more intuitive syntactic cut derivability proof for GLS1, which is a variant of GLS without the cut rule.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • How to extend the dialogical approach to provability logic.Ulrich Nortmann - 2001 - Synthese 127 (1-2):95 - 103.
    The core ideas of the dialogicalapproach to modal propositional logic are explainedby means of an elementary example. Subsequently,ways of extending this approach to the system G ofso-called provability logic are checked, therebyraising the question whether the dialogician is inneed of shaping his Nichtverzögerungsregel(non-delay-rule), in order to get it sufficiently precise,in different ways for different modal systems.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Anderson and Belnap’s Invitation to Sin.Alasdair Urquhart - 2010 - Journal of Philosophical Logic 39 (4):453 - 472.
    Quine has argued that modal logic began with the sin of confusing use and mention. Anderson and Belnap, on the other hand, have offered us a way out through a strategy of nominahzation. This paper reviews the history of Lewis's early work in modal logic, and then proves some results about the system in which "A is necessary" is intepreted as "A is a classical tautology.".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fixed-point properties for predicate modal logics.Sohei Iwata & Taishi Kurahashi - 2020 - Annals of the Japan Association for Philosophy of Science 29:1-25.
    Download  
     
    Export citation  
     
    Bookmark  
  • Conditions of Rationality for Scientific Research.Paul Weingartner - 2019 - Kriterion - Journal of Philosophy 33 (2):67-118.
    The purpose of this paper is to discuss conditions of rationality for scientific research (SR) where "conditions" are understood as "necessary conditions". This will be done in the following way: First, I shall deal with the aim of SR since conditions of rationality (for SR) are to be understood as necessary means for reaching the aim (goal) of SR. Subsequently, the following necessary conditions will be discussed: Rational Communication, Methodological Rules, Ideals of Rationality and its Realistic Aspects, Methodological and Ontological (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Proof Theory for the Logic of Provability in True Arithmetic.Hirohiko Kushida - 2020 - Studia Logica 108 (4):857-875.
    In a classical 1976 paper, Solovay proved the arithmetical completeness of the modal logic GL; provability of a formula in GL coincides with provability of its arithmetical interpretations of it in Peano Arithmetic. In that paper, he also provided an axiomatic system GLS and proved arithmetical completeness for GLS; provability of a formula in GLS coincides with truth of its arithmetical interpretations in the standard model of arithmetic. Proof theory for GL has been studied intensively up to the present day. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The provability logics of recursively enumerable theories extending peano arithmetic at arbitrary theories extending peano arithmetic.Albert Visser - 1984 - Journal of Philosophical Logic 13 (1):97 - 113.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On the complexity of arithmetical interpretations of modal formulae.Lev D. Beklemishev - 1993 - Archive for Mathematical Logic 32 (3):229-238.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns.Piero Pagliani & Mihir Chakraborty - 2008 - Dordrecht, Netherland: Springer.
    'A Geometry of Approximation' addresses Rough Set Theory, a field of interdisciplinary research first proposed by Zdzislaw Pawlak in 1982, and focuses mainly on its logic-algebraic interpretation. The theory is embedded in a broader perspective that includes logical and mathematical methodologies pertaining to the theory, as well as related epistemological issues. Any mathematical technique that is introduced in the book is preceded by logical and epistemological explanations. Intuitive justifications are also provided, insofar as possible, so that the general perspective is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Proof-theoretic modal pa-completeness I: A system-sequent metric.Paolo Gentilini - 1999 - Studia Logica 63 (1):27-48.
    This paper is the first of a series of three articles that present the syntactic proof of the PA-completeness of the modal system G, by introducing suitable proof-theoretic objects, which also have an independent interest. We start from the syntactic PA-completeness of modal system GL-LIN, previously obtained in [7], [8], and so we assume to be working on modal sequents S which are GL-LIN-theorems. If S is not a G-theorem we define here a notion of syntactic metric d(S, G): we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Inclusions Between Quantified Provability Logics.Taishi Kurahashi - 2021 - Studia Logica 110 (1):165-188.
    We investigate several consequences of inclusion relations between quantified provability logics. Moreover, we give a necessary and sufficient condition for the inclusion relation between quantified provability logics with respect to \ arithmetical interpretations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal tableau calculi and interpolation.Wolfgang Rautenberg - 1983 - Journal of Philosophical Logic 12 (4):403 - 423.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • On propositional quantifiers in provability logic.Sergei N. Artemov & Lev D. Beklemishev - 1993 - Notre Dame Journal of Formal Logic 34 (3):401-419.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relatively precomplete numerations and arithmetic.Franco Montagna - 1982 - Journal of Philosophical Logic 11 (4):419 - 430.
    Download  
     
    Export citation  
     
    Bookmark   17 citations