Switch to: Citations

References in:

Entropy - A Guide for the Perplexed

In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142 (2011)

Add references

You must login to add references.
  1. The Dappled World: A Study of the Boundaries of Science.Nancy Cartwright - 2001 - Erkenntnis 54 (3):411-415.
    Download  
     
    Export citation  
     
    Bookmark   286 citations  
  • The Matter of Chance.D. H. Mellor - 1979 - Erkenntnis 14 (2):183-216.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Probability, Statistics and Truth.Richard von Mises & Hilda Geiringer - 1959 - Philosophy of Science 26 (4):387-388.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • How the Laws of Physics Lie.Malcolm R. Forster - 1985 - Philosophy of Science 52 (3):478-480.
    Download  
     
    Export citation  
     
    Bookmark   312 citations  
  • Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics.Tim Maudlin - 1997 - Noûs 31 (4):557-568.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • There Is No Special Problem About Scientific Representation.Craig Callender & Jonathan Cohen - 2006 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 21 (1):67-85.
    We propose that scientific representation is a special case of a more general notion of representation, and that the relatively well worked-out and plausible theories of the latter are directly applicable to thc scientific special case. Construing scientific representation in this way makes the so-called “problem of scientific representation” look much less interesting than it has seerned to many, and suggests that some of the (hotly contested) debates in the literature are concerned with non-issues.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • The World of Mathematics.James Newman - 1956
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Models as Mediators: Perspectives on Natural and Social Science.Mary S. Morgan & Margaret Morrison (eds.) - 1999 - Cambridge University Press.
    Models as Mediators discusses the ways in which models function in modern science, particularly in the fields of physics and economics. Models play a variety of roles in the sciences: they are used in the development, exploration and application of theories and in measurement methods. They also provide instruments for using scientific concepts and principles to intervene in the world. The editors provide a framework which covers the construction and function of scientific models, and explore the ways in which they (...)
    Download  
     
    Export citation  
     
    Bookmark   357 citations  
  • Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Quantum Mechanics: An Empiricist View.Paul Teller & Bas C. van Fraassen - 1995 - Philosophical Review 104 (3):457.
    Download  
     
    Export citation  
     
    Bookmark   185 citations  
  • Models as Mediating Instruments.Margaret Morrison & Mary S. Morgan - 1999 - In Mary S. Morgan & Margaret Morrison (eds.), Models as Mediators: Perspectives on Natural and Social Science. Cambridge University Press.
    Morrison and Morgan argue for a view of models as 'mediating instruments' whose role in scientific theorising goes beyond applying theory. Models are partially independent of both theories and the world. This autonomy allows for a unified account of their role as instruments that allow for exploration of both theories and the world.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics.Lawrence Sklar - 1993 - New York: Cambridge University Press.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very notion (...)
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Who is a Modeler?Michael Weisberg - 2007 - British Journal for the Philosophy of Science 58 (2):207-233.
    Many standard philosophical accounts of scientific practice fail to distinguish between modeling and other types of theory construction. This failure is unfortunate because there are important contrasts among the goals, procedures, and representations employed by modelers and other kinds of theorists. We can see some of these differences intuitively when we reflect on the methods of theorists such as Vito Volterra and Linus Pauling on the one hand, and Charles Darwin and Dimitri Mendeleev on the other. Much of Volterra's and (...)
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • Philosophy of Probability: Contemporary Readings.Antony Eagle (ed.) - 2010 - New York: Routledge.
    _Philosophy of Probability: Contemporary Readings_ is the first anthology to collect essential readings in this important area of philosophy. Featuring the work of leading philosophers in the field such as Carnap, Hájek, Jeffrey, Joyce, Lewis, Loewer, Popper, Ramsey, van Fraassen, von Mises, and many others, the book looks in depth at the following key topics: subjective probability and credence probability updating: conditionalization and reflection Bayesian confirmation theory classical, logical, and evidential probability frequentism physical probability: propensities and objective chances. The book (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • GRW as an ontology of dispositions.Mauro Dorato & Michael Esfeld - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):41-49.
    The paper argues that the formulation of quantum mechanics proposed by Ghirardi, Rimini and Weber (GRW) is a serious candidate for being a fundamental physical theory and explores its ontological commitments from this perspective. In particular, we propose to conceive of spatial superpositions of non-massless microsystems as dispositions or powers, more precisely propensities, to generate spontaneous localizations. We set out five reasons for this view, namely that (1) it provides for a clear sense in which quantum systems in entangled states (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Is there a reversibility paradox? Recentering the debate on the thermodynamic time arrow.Alon Drory - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):889-913.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Everettian Epistemic Problem.Hilary Greaves - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Statistics between inductive logic and empirical science.Jan Sprenger - 2009 - Journal of Applied Logic 7 (2):239--250.
    Inductive logic generalizes the idea of logical entailment and provides standards for the evaluation of non-conclusive arguments. A main application of inductive logic is the generalization of observational data to theoretical models. In the empirical sciences, the mathematical theory of statistics addresses the same problem. This paper argues that there is no separable purely logical aspect of statistical inference in a variety of complex problems. Instead, statistical practice is often motivated by decision-theoretic considerations and resembles empirical science.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Theory and Measurement.J. A. Wheeler & W. H. Zurek - 1986 - Synthese 67 (3):527-530.
    Download  
     
    Export citation  
     
    Bookmark   176 citations  
  • Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Physics and Chance.Lawrence Sklar - 1995 - British Journal for the Philosophy of Science 46 (1):145-149.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very notion (...)
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • Essai philosophique sur les probabilités.Pierre-Simon Laplace & Maurice Solovine - 1814 - Revue de Métaphysique et de Morale 30 (1):1-2.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Patterns of Plausible Inference. --.George Pólya - 1954 - University Press.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Quantum Computation and Quantum Information.Michael A. Nielsen & Isaac L. Chuang - 2000 - Cambridge University Press.
    First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.
    Download  
     
    Export citation  
     
    Bookmark   181 citations  
  • Error and the growth of experimental knowledge.Deborah Mayo - 1996 - International Studies in the Philosophy of Science 15 (1):455-459.
    Download  
     
    Export citation  
     
    Bookmark   327 citations  
  • Interpretations of Probability in Quantum Mechanics: A Case of “Experimental Metaphysics”.Geoffrey Hellman - 2009 - In Wayne C. Myrvold & Joy Christian (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 211--227.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Handbook of philosophy of science.Jeremy Butterfield & John Earman - 2006 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Amsterdam and Boston: Elsevier.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Bell’s Theorem.Abner Shimony - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   494 citations  
  • On the Einstein Podolsky Rosen paradox.J. S. Bell - 1987 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 14--21.
    Download  
     
    Export citation  
     
    Bookmark   616 citations  
  • A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
    Download  
     
    Export citation  
     
    Bookmark   314 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   399 citations  
  • The Significance of the Ergodic Decomposition of Stationary Measures for the Interpretation of Probability.Jan Von Plato - 1982 - Synthese 53 (3):419 - 432.
    De Finetti's representation theorem is a special case of the ergodic decomposition of stationary probability measures. The problems of the interpretation of probabilities centred around de Finetti's theorem are extended to this more general situation. The ergodic decomposition theorem has a physical background in the ergodic theory of dynamical systems. Thereby the interpretations of probabilities in the cases of de Finetti's theorem and its generalization and in ergodic theory are systematically connected to each other.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dispositional Probabilities.James H. Fetzer - 1970 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1970:473 - 482.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What Was Born's Statistical Interpretation?Linda Wessels - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:187-200.
    The statistical interpretation introduced by Born in mid-1926 is not the interpretation now associated with his name. Born's own understanding of that interpretation is revealed by looking at some of its roots in Born's earlier work with Franck on collisions, his collaboration with Jordan on that topic, his contributions to matrix mechanics, his attempt in collaboration with Wiener at an operator formulation of quantum mechanics, and at the exposition of the interpretation in Born's first papers on a wave mechanical treatment (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Fractal geometry is not the geometry of nature.Orly R. Shenker - 1994 - Studies in History and Philosophy of Science Part A 25 (6):967-981.
    In recent years the magnificent world of fractals has been revealed. Some of the fractal images resemble natural forms so closely that Benoit Mandelbrot's hypothesis, that the fractal geometry is the geometry of natural objects, has been accepted by scientists and non-scientists alike. The present paper critically examines Mandelbrot's hypothesis. It first analyzes the concept of a fractal. The analysis reveals that fractals are endless geometrical processes, and not geometrical forms. A comparison between fractals and irrational numbers shows that the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Transcendental Character of Determinism.Patrick Suppes - 1993 - Midwest Studies in Philosophy 18 (1):242-257.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Time, chance and reduction: philosophical aspects of statistical mechanics.Gerhard Ernst & Andreas Hüttemann (eds.) - 2010 - New York: Cambridge University Press.
    Statistical mechanics attempts to explain the behaviour of macroscopic physical systems in terms of the mechanical properties of their constituents. Although it is one of the fundamental theories of physics, it has received little attention from philosophers of science. Nevertheless, it raises philosophical questions of fundamental importance on the nature of time, chance and reduction. Most philosophical issues in this domain relate to the question of the reduction of thermodynamics to statistical mechanics. This book addresses issues inherent in this reduction: (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Strong Free Will Theorem.John H. Conway - unknown
    The two theories that revolutionized physics in the twentieth century, relativity and quantum mechanics, are full of predictions that defy common sense. Recently, we used three such paradoxical ideas to prove “The Free Will Theorem” (strengthened here), which is the culmination of a series of theorems about quantum mechanics that began in the 1960s. It asserts, roughly, that if indeed we humans have free will, then elementary particles already have their own small share of this valuable commodity. More precisely, if (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The theory of probability.Hans Reichenbach - 1949 - Berkeley,: University of California Press.
    We must restrict to mere probability not only statements of comparatively great uncertainty, like predictions about the weather, where we would cautiously ...
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • What does the free will theorem actually prove?Sheldon Goldstein - unknown
    Conway and Kochen have presented a “free will theorem” [4, 6] which they claim shows that “if indeed we humans have free will, then [so do] elementary particles.” In a more precise fashion, they claim it shows that for certain quantum experiments in which the experimenters can choose between several options, no deterministic or stochastic model can account for the observed outcomes without violating a condition “MIN” motivated by relativistic symmetry. We point out that for stochastic models this conclusion is (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Why typicality does not explain the approach to equilibrium.Roman Frigg - 2011 - In .
    Why do systems prepared in a non-equilibrium state approach, and eventually reach, equilibrium? An important contemporary version of the Boltzmannian approach to statistical mechanics answers this question by an appeal to the notion of typicality. The problem with this approach is that it comes in different versions, which are, however, not recognised as such, much less clearly distinguished, and we often find different arguments pursued side by side. The aim of this paper is to disentangle different versions of typicality-based explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Physics and philosophy: the revolution in modern science.Werner Heisenberg - 1958 - Amherst, N.Y.: Prometheus Books.
    Presents German physicist Werner Heisenberg's 1958 text in which he discusses the philosophical implications and social consequences of quantum mechanics and other physical theories.
    Download  
     
    Export citation  
     
    Bookmark   185 citations  
  • Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics.Michael Redhead - 1987 - New York: Oxford University Press.
    Aiming to unravel the mystery of quantum mechanics, this book is concerned with questions about action-at-a-distance, holism, and whether quantum mechanics gives a complete account of microphysical reality. With rigorous arguments and clear thinking, the author provides an introduction to the philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • Is there a reversibility paradox? Recentering the debate on the thermodynamic time arrow.Alon Drory - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):889-913.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Quantum Mechanical Supertask.John D. Norton - 1999 - Foundations of Physics 29 (8):1265-1302.
    That quantum mechanical measurement processes are indeterministic is widely known. The time evolution governed by the differential Schrödinger equation can also be indeterministic under the extreme conditions of a quantum supertask, the quantum analogue of a classical supertask. Determinism can be restored by requiring normalizability of the supertask state vector, but it must be imposed as an additional constraint on the differential Schrödinger equation.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the kolmogorov–sinai entropy for Hamiltonian dynamical systems.Roman Frigg - manuscript
    Chaos is often explained in terms of random behaviour; and having positive Kolmogorov–Sinai entropy (KSE) is taken to be indicative of randomness. Although seemly plausible, the association of positive KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. A common way of justifying this use of the KSE is to draw parallels between the KSE and ShannonÕs information theoretic entropy. However, as it stands this no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Collapse theories.Giancarlo Ghirardi - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics, with its revolutionary implications, has posed innumerable problems to philosophers of science. In particular, it has suggested reconsidering basic concepts such as the existence of a world that is, at least to some extent, independent of the observer, the possibility of getting reliable and objective knowledge about it, and the possibility of taking (under appropriate circumstances) certain properties to be objectively possessed by physical systems. It has also raised many others questions which are well known to those involved (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Ergodic theory, interpretations of probability and the foundations of statistical mechanics.Janneke van Lith - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):581--94.
    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations