Switch to: Citations

Add references

You must login to add references.
  1. Non-Well-Founded Sets.Peter Aczel - 1988 - Palo Alto, CA, USA: Csli Lecture Notes.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Metamathematical investigation of intuitionistic arithmetic and analysis.Anne S. Troelstra - 1973 - New York,: Springer.
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • The theory of functions.L. Gordeev - 1988 - Annals of Pure and Applied Logic 38 (1):26.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Recursive predicates and quantifiers.S. C. Kleene - 1943 - Transactions of the American Mathematical Society 53:41-73.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The consistency of classical set theory relative to a set theory with intuitionistic logic.Harvey Friedman - 1973 - Journal of Symbolic Logic 38 (2):315-319.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The Type Theoretic Interpretation of Constructive Set Theory.Peter Aczel, Angus Macintyre, Leszek Pacholski & Jeff Paris - 1984 - Journal of Symbolic Logic 49 (1):313-314.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Independence results around constructive ZF.Robert S. Lubarsky - 2005 - Annals of Pure and Applied Logic 132 (2-3):209-225.
    CZF is an intuitionistic set theory that does not contain Power Set, substituting instead a weaker version, Subset Collection. In this paper a Kripke model of CZF is presented in which Power Set is false. In addition, another Kripke model is presented of CZF with Subset Collection replaced by Exponentiation, in which Subset Collection fails.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Constructive set theory.John Myhill - 1975 - Journal of Symbolic Logic 40 (3):347-382.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Generalizations of the one-dimensional version of the Kruskal-Friedman theorems.L. Gordeev - 1989 - Journal of Symbolic Logic 54 (1):100-121.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The strength of extensionality I—weak weak set theories with infinity.Kentaro Sato - 2009 - Annals of Pure and Applied Logic 157 (2-3):234-268.
    We measure, in the presence of the axiom of infinity, the proof-theoretic strength of the axioms of set theory which make the theory look really like a “theory of sets”, namely, the axiom of extensionality Ext, separation axioms and the axiom of regularity Reg . We first introduce a weak weak set theory as a base over which to clarify the strength of these axioms. We then prove the following results about proof-theoretic ordinals:1. and ,2. and . We also show (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Language and Axioms for Explicit Mathematics.Solomon Feferman, J. N. Crossley, Maurice Boffa, Dirk van Dalen & Kenneth Mcaloon - 1984 - Journal of Symbolic Logic 49 (1):308-311.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • The theory of functions and classes. Part I.L. Gordeev - 1988 - Annals of Pure and Applied Logic 38 (1):66.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The theory of functions and classes. Part II.L. Gordeev - 1988 - Annals of Pure and Applied Logic 38 (1):78.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proof-theoretical analysis: weak systems of functions and classes.L. Gordeev - 1988 - Annals of Pure and Applied Logic 38 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   13 citations