Switch to: References

Add citations

You must login to add citations.
  1. Total sets and objects in domain theory.Ulrich Berger - 1993 - Annals of Pure and Applied Logic 60 (2):91-117.
    Berger, U., Total sets and objects in domain theory, Annals of Pure and Applied Logic 60 91-117. Total sets and objects generalizing total functions are introduced into the theory of effective domains of Scott and Ersov. Using these notions Kreisel's Density Theorem and the Theorem of Kreisel-Lacombe-Shoenfield are generalized. As an immediate consequence we obtain the well-known continuity of computable functions on the constructive reals as well as a domain-theoretic characterization of the Heriditarily Effective Operations.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Set existence property for intuitionistic theories with dependent choice.Harvey M. Friedman & Andrej Ščedrov - 1983 - Annals of Pure and Applied Logic 25 (2):129-140.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Extracting Herbrand disjunctions by functional interpretation.Philipp Gerhardy & Ulrich Kohlenbach - 2005 - Archive for Mathematical Logic 44 (5):633-644.
    Abstract.Carrying out a suggestion by Kreisel, we adapt Gödel’s functional interpretation to ordinary first-order predicate logic(PL) and thus devise an algorithm to extract Herbrand terms from PL-proofs. The extraction is carried out in an extension of PL to higher types. The algorithm consists of two main steps: first we extract a functional realizer, next we compute the β-normal-form of the realizer from which the Herbrand terms can be read off. Even though the extraction is carried out in the extended language, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realizability and intuitionistic logic.J. Diller & A. S. Troelstra - 1984 - Synthese 60 (2):253 - 282.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Analysing choice sequences.A. S. Troelstra - 1983 - Journal of Philosophical Logic 12 (2):197 - 260.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • History and Philosophy of Constructive Type Theory.Giovanni Sommaruga - 2000 - Dordrecht, Netherland: Springer.
    A comprehensive survey of Martin-Löf's constructive type theory, considerable parts of which have only been presented by Martin-Löf in lecture form or as part of conference talks. Sommaruga surveys the prehistory of type theory and its highly complex development through eight different stages from 1970 to 1995. He also provides a systematic presentation of the latest version of the theory, as offered by Martin-Löf at Leiden University in Fall 1993. This presentation gives a fuller and updated account of the system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An interpretation of intuitionistic analysis.D. van Dalen - 1978 - Annals of Mathematical Logic 13 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The correspondence between cut-elimination and normalization II.J. Zucker - 1974 - Annals of Mathematical Logic 7 (2):113.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)An intuitionistic fixed point theory.Wilfried Buchholz - 1997 - Archive for Mathematical Logic 37 (1):21-27.
    In this article we prove that a certain intuitionistic version of the well-known fixed point theory \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\widehat{\rm ID}_1$\end{document} is conservative over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mbox{\sf HA}$\end{document} for almost negative formulas.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Fragments of arithmetic.Wilfried Sieg - 1985 - Annals of Pure and Applied Logic 28 (1):33-71.
    We establish by elementary proof-theoretic means the conservativeness of two subsystems of analysis over primitive recursive arithmetic. The one subsystem was introduced by Friedman [6], the other is a strengthened version of a theory of Minc [14]; each has been shown to be of considerable interest for both mathematical practice and metamathematical investigations. The foundational significance of such conservation results is clear: they provide a direct finitist justification of the part of mathematical practice formalizable in these subsystems. The results are (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • The Peirce Translation.Martín Escardó & Paulo Oliva - 2012 - Annals of Pure and Applied Logic 163 (6):681-692.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On a second order propositional operator in intuitionistic logic.A. S. Troelstra - 1981 - Studia Logica 40 (2):113 - 139.
    This paper studies, by way of an example, the intuitionistic propositional connective * defined in the language of second order propositional logic by. In full topological models * is not generally definable, but over Cantor-space and the reals it can be classically shown that; on the other hand, this is false constructively, i.e. a contradiction with Church's thesis is obtained. This is comparable with some well-known results on the completeness of intuitionistic first-order predicate logic.Over [0, 1], the operator * is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Δ10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^0_1$$\end{document} variants of the law of excluded middle and related principles. [REVIEW]Makoto Fujiwara - 2022 - Archive for Mathematical Logic 61 (7-8):1113-1127.
    We systematically study the interrelations between all possible variations of Δ10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^0_1$$\end{document} variants of the law of excluded middle and related principles in the context of intuitionistic arithmetic and analysis.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strict Finitism and the Logic of Mathematical Applications.Feng Ye - 2011 - Dordrecht, Netherland: Springer.
    This book intends to show that radical naturalism, nominalism and strict finitism account for the applications of classical mathematics in current scientific theories. The applied mathematical theories developed in the book include the basics of calculus, metric space theory, complex analysis, Lebesgue integration, Hilbert spaces, and semi-Riemann geometry. The fact that so much applied mathematics can be developed within such a weak, strictly finitistic system, is surprising in itself. It also shows that the applications of those classical theories to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dependent choice as a termination principle.Thomas Powell - 2020 - Archive for Mathematical Logic 59 (3-4):503-516.
    We introduce a new formulation of the axiom of dependent choice, which can be viewed as an abstract termination principle that in particular generalises recursive path orderings, the latter being fundamental tools used to establish termination of rewrite systems. We consider several variants of our termination principle, and relate them to general termination theorems in the literature.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Recursive models for constructive set theories.N. Beeson - 1982 - Annals of Mathematical Logic 23 (2/3):127.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Extensional realizability.Jaap van Oosten - 1997 - Annals of Pure and Applied Logic 84 (3):317-349.
    Two straightforward “extensionalisations” of Kleene's realizability are considered; denoted re and e. It is shown that these realizabilities are not equivalent. While the re-notion is a subset of Kleene's realizability, the e-notion is not. The problem of an axiomatization of e-realizability is attacked and one arrives at an axiomatization over a conservative extension of arithmetic, in a language with variables for finite sets. A derived rule for arithmetic is obtained by the use of a q-variant of e-realizability; this rule subsumes (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Uniform proofs as a foundation for logic programming.Dale Miller, Gopalan Nadathur, Frank Pfenning & Andre Scedrov - 1991 - Annals of Pure and Applied Logic 51 (1-2):125-157.
    Miller, D., G. Nadathur, F. Pfenning and A. Scedrov, Uniform proofs as a foundation for logic programming, Annals of Pure and Applied Logic 51 125–157. A proof-theoretic characterization of logical languages that form suitable bases for Prolog-like programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its operational meaning, provided by interpreting logical connectives as simple and fixed search instructions. The (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Completeness proofs for propositional logic with polynomial-time connectives.John N. Crossley & Philip J. Scott - 1989 - Annals of Pure and Applied Logic 44 (1-2):39-52.
    Download  
     
    Export citation  
     
    Bookmark  
  • On maximal intermediate predicate constructive logics.Alessandro Avellone, Camillo Fiorentini, Paolo Mantovani & Pierangelo Miglioli - 1996 - Studia Logica 57 (2-3):373 - 408.
    We extend to the predicate frame a previous characterization of the maximal intermediate propositional constructive logics. This provides a technique to get maximal intermediate predicate constructive logics starting from suitable sets of classically valid predicate formulae we call maximal nonstandard predicate constructive logics. As an example of this technique, we exhibit two maximal intermediate predicate constructive logics, yet leaving open the problem of stating whether the two logics are distinct. Further properties of these logics will be also investigated.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatizing higher-order Kleene realizability.Jaap van Oosten - 1994 - Annals of Pure and Applied Logic 70 (1):87-111.
    Kleene's realizability interpretation for first-order arithmetic was shown by Hyland to fit into the internal logic of an elementary topos, the “Effective topos” . In this paper it is shown, that there is an internal realizability definition in , i.e. a syntactical translation of the internal language of into itself of form “n realizes ” , which extends Kleene's definition, and such that for sentences , the equivalence [harr]n is true in . The internal realizability definition depends on finding separated (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretations of Heyting's arithmetic—An analysis by means of a language with set symbols.Martin Stein - 1980 - Annals of Mathematical Logic 19 (1):1-31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On church's formal theory of functions and functionals.Giuseppe Longo - 1988 - Annals of Pure and Applied Logic 40 (2):93-133.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Odel's dialectica interpretation and its two-way stretch.Solomon Feferman - manuscript
    In 1958, G¨ odel published in the journal Dialectica an interpretation of intuitionistic number theory in a quantifier-free theory of functionals of finite type; this subsequently came to be known as G¨ odel’s functional or Dialectica interpretation. The article itself was written in German for an issue of that journal in honor of Paul Bernays’ 70th birthday. In 1965, Bernays told G¨.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Relative constructivity.Ulrich Kohlenbach - 1998 - Journal of Symbolic Logic 63 (4):1218-1238.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the structure of kripke models of heyting arithmetic.Zoran Marković - 1993 - Mathematical Logic Quarterly 39 (1):531-538.
    Since in Heyting Arithmetic all atomic formulas are decidable, a Kripke model for HA may be regarded classically as a collection of classical structures for the language of arithmetic, partially ordered by the submodel relation. The obvious question is then: are these classical structures models of Peano Arithmetic ? And dually: if a collection of models of PA, partially ordered by the submodel relation, is regarded as a Kripke model, is it a model of HA? Some partial answers to these (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the independence of premiss axiom and rule.Hajime Ishihara & Takako Nemoto - 2020 - Archive for Mathematical Logic 59 (7-8):793-815.
    In this paper, we deal with a relationship among the law of excluded middle, the double negation elimination and the independence of premiss rule ) for intuitionistic predicate logic. After giving a general machinery, we give, as corollaries, several examples of extensions of \ and \ which are closed under \ but do not derive the independence of premiss axiom.
    Download  
     
    Export citation  
     
    Bookmark  
  • A herbrandized functional interpretation of classical first-order logic.Fernando Ferreira & Gilda Ferreira - 2017 - Archive for Mathematical Logic 56 (5-6):523-539.
    We introduce a new typed combinatory calculus with a type constructor that, to each type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, associates the star type σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^*$$\end{document} of the nonempty finite subsets of elements of type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some principles weaker than Markov’s principle.Makoto Fujiwara, Hajime Ishihara & Takako Nemoto - 2015 - Archive for Mathematical Logic 54 (7-8):861-870.
    We systematically study several principles and give a principle which is weaker than disjunctive Markov’s principle. We also show that the principle is underivable and strictly weaker than MP∨ in certain extensions of the system EL of elementary analysis.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Proof mining in L1-approximation.Ulrich Kohlenbach & Paulo Oliva - 2003 - Annals of Pure and Applied Logic 121 (1):1-38.
    In this paper, we present another case study in the general project of proof mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation developed in Kohlenbach , Oxford University Press, Oxford, 1996, pp. 225–260) to analyze Cheney's simplification 189) of Jackson's original proof 320) of the uniqueness of the best L1-approximation of continuous functions fC[0,1] by polynomials pPn of degree n. Cheney's (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • KALC: a constructive semantics for ALC.Paola Villa - 2011 - Journal of Applied Non-Classical Logics 21 (2):233-255.
    In this article we firstly present a Kripke semantics for the description logic ALC which is directly inspired by the semantics for Intuitionistic logic. Moreover, we discuss why a direct translation of this kind of semantics is not adequate in the description logic context and propose a constructive semantics that differs from the previous one by the fact that we impose a condition on the partial order. We also present a tableau calculus which is sound and complete with respect to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on Herbrand normal forms and Herbrand realizations.Ulrich Kohlenbach - 1992 - Archive for Mathematical Logic 31 (5):305-317.
    LetA H be the Herbrand normal form ofA andA H,D a Herbrand realization ofA H. We showThere is an example of an (open) theory ℐ+ with function parameters such that for someA not containing function parameters Similar for first order theories ℐ+ if the index functions used in definingA H are permitted to occur in instances of non-logical axiom schemata of ℐ, i.e. for suitable ℐ,A In fact, in (1) we can take for ℐ+ the fragment (Σ 1 0 -IA)+ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Uniform heyting arithmetic.Ulrich Berger - 2005 - Annals of Pure and Applied Logic 133 (1):125-148.
    We present an extension of Heyting arithmetic in finite types called Uniform Heyting Arithmetic that allows for the extraction of optimized programs from constructive and classical proofs. The system has two sorts of first-order quantifiers: ordinary quantifiers governed by the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly that the quantified object is not computationally used in the proof. We combine a Kripke-style Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Submodels of Kripke models.Albert Visser - 2001 - Archive for Mathematical Logic 40 (4):277-295.
    A Kripke model ? is a submodel of another Kripke model ℳ if ? is obtained by restricting the set of nodes of ℳ. In this paper we show that the class of formulas of Intuitionistic Predicate Logic that is preserved under taking submodels of Kripke models is precisely the class of semipositive formulas. This result is an analogue of the Łoś-Tarski theorem for the Classical Predicate Calculus.In Appendix A we prove that for theories with decidable identity we can take (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Godel's functional interpretation.Jeremy Avigad & Solomon Feferman - 1998 - In Samuel R. Buss (ed.), Handbook of proof theory. New York: Elsevier. pp. 337-405.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Undecidability and intuitionistic incompleteness.D. C. McCarty - 1996 - Journal of Philosophical Logic 25 (5):559 - 565.
    Let S be a deductive system such that S-derivability (⊦s) is arithmetic and sound with respect to structures of class K. From simple conditions on K and ⊦s, it follows constructively that the K-completeness of ⊦s implies MP(S), a form of Markov's Principle. If ⊦s is undecidable then MP(S) is independent of first-order Heyting arithmetic. Also, if ⊦s is undecidable and the S proof relation is decidable, then MP(S) is independent of second-order Heyting arithmetic, HAS. Lastly, when ⊦s is many-one (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Concepts of general topology in constructive mathematics and in sheaves, II.R. J. Grayson - 1982 - Annals of Mathematical Logic 23 (1):55.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intuitionistically provable recursive well-orderings.Harvey M. Friedman & Andre Scedrov - 1986 - Annals of Pure and Applied Logic 30 (2):165-171.
    We consider intuitionistic number theory with recursive infinitary rules . Any primitive recursive binary relation for which transfinite induction schema is provable is in fact well founded. Its ordinal is less than ε 0 if the transfinite induction schema is intuitionistically provable in elementary number theory. These results are provable intuitionistically. In fact, it suffices to consider transfinite induction with respect to one particular number-theoretic property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An analysis of gödel's dialectica interpretation via linear logic.Paulo Oliva - 2008 - Dialectica 62 (2):269–290.
    This article presents an analysis of Gödel's dialectica interpretation via a refinement of intuitionistic logic known as linear logic. Linear logic comes naturally into the picture once one observes that the structural rule of contraction is the main cause of the lack of symmetry in Gödel's interpretation. We use the fact that the dialectica interpretation of intuitionistic logic can be viewed as a composition of Girard's embedding of intuitionistic logic into linear logic followed by de Paiva's dialectica interpretation of linear (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simplicity and incompleteness.Panu Raatikainen - 1998 - Synthese 116 (3):357-364.
    Download  
     
    Export citation  
     
    Bookmark  
  • The equivalence of bar recursion and open recursion.Thomas Powell - 2014 - Annals of Pure and Applied Logic 165 (11):1727-1754.
    Several extensions of Gödel's system TT with new forms of recursion have been designed for the purpose of giving a computational interpretation to classical analysis. One can organise many of these extensions into two groups: those based on bar recursion , which include Spector's original bar recursion, modified bar recursion and the more recent products of selections functions, or those based on open recursion which in particular include the symmetric Berardi–Bezem–Coquand functional. We relate these two groups by showing that both (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Monotone majorizable functionals.Helmut Schwichtenberg - 1999 - Studia Logica 62 (2):283-289.
    Several properties of monotone functionals (MF) and monotone majorizable functionals (MMF) used in the earlier work by the author and van de Pol are proved. It turns out that the terms of the simply typed lambda-calculus define MF, but adding primitive recursion, and even monotonic primitive recursion changes the situation: already Z.Z(1 — sg) is not MMF. It is proved that extensionality is not Dialectica-realizable by MMF, and a simple example of a MF which is not hereditarily majorizable is given.
    Download  
     
    Export citation  
     
    Bookmark  
  • Concepts of general topology in constructive mathematics and in sheaves.R. J. Grayson - 1981 - Annals of Mathematical Logic 20 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Proof-theoretical analysis: weak systems of functions and classes.L. Gordeev - 1988 - Annals of Pure and Applied Logic 38 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The binary expansion and the intermediate value theorem in constructive reverse mathematics.Josef Berger, Hajime Ishihara, Takayuki Kihara & Takako Nemoto - 2019 - Archive for Mathematical Logic 58 (1-2):203-217.
    We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ) is equivalent to weak König lemma ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to \ for convex trees, in the framework of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations