Switch to: Citations

Add references

You must login to add references.
  1. General relativity as a perfectly Machian theory.Julian B. Barbour - 1995 - In Julian B. Barbour & H. Pfister (eds.), Mach's Principle: From Newton's Bucket to Quantum Gravity. Birkhäuser. pp. 214--36.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Direction of Time.Max Black - 1958 - Analysis 19 (3):54 - 63.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Symmetry and gauge freedom.Gordon Belot - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (2):189-225.
    The classical field theories that underlie the quantum treatments of the electromagnetic, weak, and strong forces share a peculiar feature: specifying the initial state of the field determines the evolution of some degrees of freedom of the theory while leaving the evolution of some others wholly arbitrary. This strongly suggests that some of the variables of the standard state space lack physical content-intuitively, the space of states of such a theory is of higher dimension than the corresponding space of genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The Definition of Mach’s Principle.Julian Barbour - 2010 - Foundations of Physics 40 (9-10):1263-1284.
    Two definitions of Mach’s principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The direction of time.Hans Reichenbach - 1956 - Mineola, N.Y.: Dover Publications. Edited by Maria Reichenbach.
    The final work of a distinguished physicist, this remarkable volume examines the emotive significance of time, the time order of mechanics, the time direction of thermodynamics and microstatistics, the time direction of macrostatistics, and the time of quantum physics. Coherent discussions include accounts of analytic methods of scientific philosophy in the investigation of probability, quantum mechanics, the theory of relativity, and causality. "[Reichenbach’s] best by a good deal."—Physics Today. 1971 ed.
    Download  
     
    Export citation  
     
    Bookmark   468 citations  
  • Space-Time-Matter.Hermann Weyl - 1922 - London,: E.P. Dutton and Company. Edited by Henry L. Brose.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Boundary terms in the action principles of general relativity.James W. York - 1986 - Foundations of Physics 16 (3):249-257.
    I address the question: “What is fixed on the boundary in the action principles of general relativity?” Four forms of the action are considered: the Einstein action, the Hilbert action, the first order action, and what may be called the cosmological action. The relationships and boundary data of these actions are described geometrically. Formal passage to the “Euclidean” forms of these actions is effected in detail.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Science of Mechanics.E. B. T., E. Mach & T. J. McCormack - 1894 - Philosophical Review 3 (1):123.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Symplectic Reduction and the Problem of Time in Nonrelativistic Mechanics.Karim P. Y. Thébault - 2012 - British Journal for the Philosophy of Science 63 (4):789-824.
    Symplectic reduction is a formal process through which degeneracy within the mathematical representations of physical systems displaying gauge symmetry can be controlled via the construction of a reduced phase space. Typically such reduced spaces provide us with a formalism for representing both instantaneous states and evolution uniquely and for this reason can be justifiably afforded the status of fun- damental dynamical arena - the otiose structure having been eliminated from the original phase space. Essential to the application of symplectic reduction (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Three denials of time in the interpretation of canonical gravity.Karim P. Y. Thébault - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (4):277-294.
    The analysis of the temporal structure of canonical general relativity and the connected interpretational questions with regard to the role of time within the theory both rest upon the need to respect the fundamentally dual role of the Hamiltonian constraints found within the formalism. Any consistent philosophical approach towards the theory must pay dues to the role of these constraints in both generating dynamics, in the context of phase space, and generating unphysical symmetry transformations, in the context of a hypersurface (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • By their properties, causes and Effects: Newton's Scholium on time, space, place and motion—II. The context.Robert Rynasiewicz - 1991 - Studies in History and Philosophy of Science Part A 26 (2):295-321.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • By their properties, causes and effects: Newton's scholium on time, space, place and motion—I. The text.Robert Rynasiewicz - 1995 - Studies in History and Philosophy of Science Part A 26 (1):133-153.
    As I have read the scholium, it divides into three main parts, not including the introductory paragraph. The first consists of paragraphs one to four in which Newton sets out his characterizations of absolute and relative time, space, place, and motion. Although some justificatory material is included here, notably in paragraph three, the second part is reserved for the business of justifying the characterizations he has presented. The main object is to adduce grounds for believing that the absolute quantities are (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • A philosopher looks at string dualities.Dean Rickles - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):54-67.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Time’s arrow and Archimedes’ point.Huw Price - 1996 - Philosophical and Phenomenological Research 59 (4):1093-1096.
    Download  
     
    Export citation  
     
    Bookmark   294 citations  
  • On Dirac's incomplete analysis of gauge transformations.Josep M. Pons - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (3):491-518.
    Dirac's approach to gauge symmetries is discussed. We follow closely the steps that led him from his conjecture concerning the generators of gauge transformations {\it at a given time} ---to be contrasted with the common view of gauge transformations as maps from solutions of the equations of motion into other solutions--- to his decision to artificially modify the dynamics, substituting the extended Hamiltonian for the total Hamiltonian. We show in detail that Dirac's analysis was incomplete and, in completing it, we (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Review of T he Direction of Time.Henryk Mehlberg - 1962 - Philosophical Review 71 (1):99.
    Download  
     
    Export citation  
     
    Bookmark   226 citations  
  • The unreality of time.John Ellis McTaggart - 1908 - Mind 17 (68):457-474.
    Download  
     
    Export citation  
     
    Bookmark   453 citations  
  • Realism, underdetermination and string theory dualities.Keizo Matsubara - 2013 - Synthese 190 (3):471-489.
    String theory promises to be able to provide us with a working theory of quantum gravity and a unified description of all fundamental forces. In string theory there are so called ‘dualities’; i.e. different theoretical formulations that are physically equivalent. In this article these dualities are investigated from a philosophical point of view. Semantic and epistemic questions relating to the problem of underdetermination of theories by data and the debate on realism concerning scientific theories are discussed. Depending on ones views (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Making the Case for Conformal Gravity.Philip D. Mannheim - 2012 - Foundations of Physics 42 (3):388-420.
    We review some recent developments in the conformal gravity theory that has been advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a PT symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori classical curvature, with all curvature having to result from quantization. In the conformal theory gravity requires no independent quantization (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Role of Time in Relational Quantum Theories.Sean Gryb & Karim Thébault - 2012 - Foundations of Physics 42 (9):1210-1238.
    We propose a solution to the problem of time for systems with a single global Hamiltonian constraint. Our solution stems from the observation that, for these theories, conventional gauge theory methods fail to capture the full classical dynamics of the system and must therefore be deemed inappropriate. We propose a new strategy for consistently quantizing systems with a relational notion of time that does capture the full classical dynamics of the system and allows for evolution parametrized by an equitable internal (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Symmetry and Evolution in Quantum Gravity.Sean Gryb & Karim Thébaault - 2014 - Foundations of Physics 44 (3):305-348.
    We propose an operator constraint equation for the wavefunction of the Universe that admits genuine evolution. While the corresponding classical theory is equivalent to the canonical decomposition of General Relativity, the quantum theory contains an evolution equation distinct from standard Wheeler–DeWitt cosmology. Furthermore, the local symmetry principle—and corresponding observables—of the theory have a direct interpretation in terms of a conventional gauge theory, where the gauge symmetry group is that of spatial conformal diffeomorphisms (that preserve the spatial volume of the Universe). (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Metaphysical underdetermination: why worry?Steven French - 2011 - Synthese 180 (2):205 - 221.
    Various forms of underdetermination that might threaten the realist stance are examined. That which holds between different 'formulations' of a theory (such as the Hamiltonian and Lagrangian formulations of classical mechanics) is considered in some detail, as is the 'metaphysical' underdetermination invoked to support 'ontic structural realism'. The problematic roles of heuristic fruitfulness and surplus structure in attempts to break these forms of underdetermination are discussed and an approach emphasizing the relevant structural commonalities is defended.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • On A- and B-theoretic elements of branching spacetimes.Matt Farr - 2012 - Synthese 188 (1):85-116.
    This paper assesses branching spacetime theories in light of metaphysical considerations concerning time. I present the A, B, and C series in terms of the temporal structure they impose on sets of events, and raise problems for two elements of extant branching spacetime theories—McCall’s ‘branch attrition’, and the ‘no backward branching’ feature of Belnap’s ‘branching space-time’—in terms of their respective A- and B-theoretic nature. I argue that McCall’s presentation of branch attrition can only be coherently formulated on a model with (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum Gravity.Carlo Rovelli - 2007 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • The Unreality of Time.J. Ellis McTaggart - 1908 - Philosophical Review 18:466.
    Download  
     
    Export citation  
     
    Bookmark   202 citations  
  • Points, particles, and structural realism.Oliver Pooley - 2005 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford University Press. pp. 83--120.
    In his paper ``What is Structural Realism?'' James Ladyman drew a distinction between epistemological structural realism and metaphysical (or ontic) structural realism. He also drew a suggestive analogy between the perennial debate between substantivalist and relationalist interpretations of spacetime on the one hand, and the debate about whether quantum mechanics treats identical particles as individuals or as `non-individuals' on the other. In both cases, Ladyman's suggestion is that an ontic structural realist interpretation of the physics might be just what is (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • The representation of time and change in mechanics.Gordon Belot - 2005 - In John Earman & Jeremy Butterfield (eds.), Philosophy of Physics. Elsevier. pp. 133--227.
    This chapter is concerned with the representation of time and change in classical (i.e., non-quantum) physical theories. One of the main goals of the chapter is to attempt to clarify the nature and scope of the so-called problem of time: a knot of technical and interpretative problems that appear to stand in the way of attempts to quantize general relativity, and which have their roots in the general covariance of that theory. The most natural approach to these questions is via (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Scale-invariant gravity: Geometrodynamics.Edward Anderson, Julian Barbour, Brendan Foster & Niall Ó~Murchadha - 2003 - Classical and Quantum Gravity 20:1571--604.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Scale-invariant gravity: Particle dynamics.Julian B. Barbour - 2003 - Classical and Quantum Gravity 20:1543--70.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A First Class Constraint Generates Not a Gauge Transformation, But a Bad Physical Change: The Case of Electromagnetism.J. Brian Pitts - unknown
    In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not _alone_ generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell's theory generates a change in the electric field E by an arbitrary gradient, spoiling Gauss's law. The secondary first-class constraint p^i,_i=0 still holds, but being a function of derivatives of momenta, it is not directly about E. Only a special combination of the two first-class constraints, the Anderson-Bergmann -Castellani gauge generator G, leaves E (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Pre-socratic quantum gravity.Gordon Belot & John Earman - 2001 - In Craig Callender & Nick Huggett (eds.), Physics Meets Philosophy at the Planck Scale. Cambridge University Press. pp. 213--55.
    Physicists who work on canonical quantum gravity will sometimes remark that the general covariance of general relativity is responsible for many of the thorniest technical and conceptual problems in their field.1 In particular, it is sometimes alleged that one can trace to this single source a variety of deep puzzles about the nature of time in quantum gravity, deep disagreements surrounding the notion of ‘observable’ in classical and quantum gravity, and deep questions about the nature of the existence of spacetime (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Symmetry & possibility: To reduce or not reduce?Dean Rickles - unknown
    In this paper I examine the connection between symmetry and modality from the perspective of `reduction' methods in geometric mechanics. I begin by setting the problem up as a choice between two opposing views: reduction and non-reduction. I then discern four views on the matter in the literature; they are distinguished by their advocation of distinct geometric spaces as representing `reality'. I come down in favour of non-reductive methods.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Symmetry, Ontology and the Problem of Time: On the Interpretation and Quantisation of Canonical Gravity.Karim P. Y. Thebault - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tracking down gauge: An ode to the constrained Hamiltonian formalism.John Earman - 2003 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 140--62.
    Like moths attracted to a bright light, philosophers are drawn to glitz. So in discussing the notions of ‘gauge’, ‘gauge freedom’, and ‘gauge theories’, they have tended to focus on examples such as Yang–Mills theories and on the mathematical apparatus of fibre bundles. But while Yang–Mills theories are crucial to modern elementary particle physics, they are only a special case of a much broader class of gauge theories. And while the fibre bundle apparatus turned out, in retrospect, to be the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Towards a C Theory of Time: An appraisal of the physics and metaphysics of time direction.Matt Farr - 2012 - Dissertation, University of Bristol
    This thesis introduces and defends a ‘C theory’ of time. The metaphysics of time literature is primarily concerned with the distinction between the A and B theories of time, with the disagreement concerning whether the passage of time is an objective feature of reality. I argue that the distinction between the B and C theories—in terms of whether time has a ‘privileged’ direction—is of more obvious relevance to the philosophy of physics than is the distinction between the A and B (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Time's Arrow and Archimedes' Point: New Directions for the Physics of Time.Huw Price - 1998 - British Journal for the Philosophy of Science 49 (1):135-159.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Scientific realism in the age of string theory.Richard Dawid - 2007 - Physics and Philosophy.
    String theory currently is the only viable candidate for a unified description of all known natural forces. This article tries to demonstrate that the fundamental structural and methodological differences that set string theory apart from other physical theories have important philosophical consequences. Focussing on implications for the realism debate in philosophy of science, it is argued that both poles of that debate face new problems in the context of string theory. On the one hand, the claim of underdetermination of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Space-Time-Matter.Hermann Weyl & Henry L. Brose - 1953 - British Journal for the Philosophy of Science 3 (12):382-382.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Die mechanik in ihrer entwickelung historisch-kritisch dargestellt.Ernst Mach - 1885 - Revue Philosophique de la France Et de l'Etranger 19:232-235.
    Download  
     
    Export citation  
     
    Bookmark   102 citations