Switch to: References

Citations of:

Space-Time-Matter

London,: E.P. Dutton and Company. Edited by Henry L. Brose (1922)

Add citations

You must login to add citations.
  1. The material theory of induction.John D. Norton - 2021 - Calgary, Alberta, Canada: University of Calgary Press.
    The inaugural title in the new, Open Access series BSPS Open, The Material Theory of Induction will initiate a new tradition in the analysis of inductive inference. The fundamental burden of a theory of inductive inference is to determine which are the good inductive inferences or relations of inductive support and why it is that they are so. The traditional approach is modeled on that taken in accounts of deductive inference. It seeks universally applicable schemas or rules or a single (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • The Mathematical Universe.Max Tegmark - 2007 - Foundations of Physics 38 (2):101-150.
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Time Remains.Sean Gryb & Karim P. Y. Thébault - 2016 - British Journal for the Philosophy of Science 67 (3):663-705.
    On one popular view, the general covariance of gravity implies that change is relational in a strong sense, such that all it is for a physical degree of freedom to change is for it to vary with regard to a second physical degree of freedom. At a quantum level, this view of change as relative variation leads to a fundamentally timeless formalism for quantum gravity. Here, we will show how one may avoid this acute ‘problem of time’. Under our view, (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Understanding Gauge.James Owen Weatherall - 2015 - Philosophy of Science 83 (5):1039-1049.
    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Relational Passage of Time.Matias Slavov - 2022 - New York: Routledge.
    This book defends a relational theory of the passage of time. The realist view of passage developed in this book differs from the robust, substantivalist position. According to relationism, passage is nothing over and above the succession of events, one thing coming after another. Causally related events are temporally arranged as they happen one after another along observers’ worldlines. There is no unique global passage but a multiplicity of local passages of time. After setting out this positive argument for relationism, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Knox’s inertial spacetime functionalism.David John Baker - 2020 - Synthese 199 (S2):277-298.
    Eleanor Knox has argued that our concept of spacetime applies to whichever structure plays a certain functional role in the laws. I raise two objections to this inertial functionalism. First, it depends on a prior assumption about which coordinate systems defined in a theory are reference frames, and hence on assumptions about which geometric structures are spatiotemporal. This makes Knox’s account circular. Second, her account is vulnerable to several counterexamples, giving the wrong result when applied to topological quantum field theories (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Geometry and motion.Gordon Belot - 2000 - British Journal for the Philosophy of Science 51 (4):561--95.
    I will discuss only one of the several entwined strands of the philosophy of space and time, the question of the relation between the nature of motion and the geometrical structure of the world.1 This topic has many of the virtues of the best philosophy of science. It is of long-standing philosophical interest and has a rich history of connections to problems of physics. It has loomed large in discussions of space and time among contemporary philosophers of science. Furthermore, there (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On Spacetime Functionalism.David John Baker - manuscript
    Eleanor Knox has argued that our concept of spacetime applies to whichever structure plays a certain functional role in the laws (the role of determining local inertial structure). I raise two complications for this approach. First, our spacetime concept seems to have the structure of a cluster concept, which means that Knox's inertial criteria for spacetime cannot succeed with complete generality. Second, the notion of metaphysical fundamentality may feature in the spacetime concept, in which case spacetime functionalism may be uninformative (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The transient nows.Steven F. Savitt - 2009 - In Wayne C. Myrvold & Joy Christian, Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 349--362.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • General Relativity, Mental Causation, and Energy Conservation.J. Brian Pitts - 2022 - Erkenntnis 87 (4):1931-1973.
    The conservation of energy and momentum have been viewed as undermining Cartesian mental causation since the 1690s. Modern discussions of the topic tend to use mid-nineteenth century physics, neglecting both locality and Noether’s theorem and its converse. The relevance of General Relativity has rarely been considered. But a few authors have proposed that the non-localizability of gravitational energy and consequent lack of physically meaningful local conservation laws answers the conservation objection to mental causation: conservation already fails in GR, so there (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Two dogmas of dynamicism.James Owen Weatherall - 2020 - Synthese 199 (S2):253-275.
    I critically discuss two dogmas of the “dynamical approach” to spacetime in general relativity, as advanced by Harvey Brown [Physical Relativity Oxford:Oxford University Press] and collaborators. The first dogma is that positing a “spacetime geometry” has no implications for the behavior of matter. The second dogma is that postulating the “Strong Equivalence Principle” suffices to ensure that matter is “adapted” to spacetime geometry. I conclude by discussing “spacetime functionalism”. The discussion is presented in reaction to and sympathy with recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Conservation, inertia, and spacetime geometry.James Owen Weatherall - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:144-159.
    As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the "conservation condition", which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Block Universe: A Philosophical Investigation in Four Dimensions.Pieter Thyssen - 2020 - Dissertation, Ku Leuven
    The aim of this doctoral dissertation is to closely explore the nature of Einstein’s block universe and to tease out its implications for the nature of time and human freedom. Four questions, in particular, are central to this dissertation, and set out the four dimensions of this philosophical investigation: (1) Does the block universe view of time follow inevitably from the theory of special relativity? (2) Is there room for the passage of time in the block universe? (3) Can we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classical Spacetime Structure.James Owen Weatherall - 2022 - In Eleanor Knox & Alastair Wilson, The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss several issues related to "classical" spacetime structure. I review Galilean, Newtonian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the role of special relativity in general relativity.Harvey R. Brown - 1997 - International Studies in the Philosophy of Science 11 (1):67 – 81.
    The existence of a definite tangent space structure (metric with Lorentzian signature) in the general theory of relativity is the consequence of a fundamental assumption concerning the local validity of special relativity. There is then at the heart of Einstein's theory of gravity an absolute element which depends essentially on a common feature of all the non-gravitational interactions in the world, and which has nothing to do with space-time curvature. Tentative implications of this point for the significance of the vacuum (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Which symmetry? Noether, Weyl, and conservation of electric charge.Katherine A. Brading - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (1):3-22.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On the Explanation of Inertia.Adán Sus - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):293-315.
    In General Relativity (GR), it has been claimed that inertia receives a dynamical explanation. This is in contrast to the situation in other theories, such as Special Relativity, because the geodesic principle of GR can be derived from Einstein’s field equations. The claim can be challenged in different ways, all of which question whether the status of inertia in GR is physically different from its status in previous spacetime theories. In this paper I state the original argument for the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Talking at cross-purposes: how Einstein and the logical empiricists never agreed on what they were disagreeing about.Marco Giovanelli - 2013 - Synthese 190 (17):3819-3863.
    By inserting the dialogue between Einstein, Schlick and Reichenbach into a wider network of debates about the epistemology of geometry, this paper shows that not only did Einstein and Logical Empiricists come to disagree about the role, principled or provisional, played by rods and clocks in General Relativity, but also that in their lifelong interchange, they never clearly identified the problem they were discussing. Einstein’s reflections on geometry can be understood only in the context of his ”measuring rod objection” against (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Conservation of Energy: Missing Features in Its Nature and Justification and Why They Matter.J. Brian Pitts - 2020 - Foundations of Science 26 (3):559-584.
    Misconceptions about energy conservation abound due to the gap between physics and secondary school chemistry. This paper surveys this difference and its relevance to the 1690s–2010s Leibnizian argument that mind-body interaction is impossible due to conservation laws. Justifications for energy conservation are partly empirical, such as Joule’s paddle wheel experiment, and partly theoretical, such as Lagrange’s statement in 1811 that energy is conserved if the potential energy does not depend on time. In 1918 Noether generalized results like Lagrange’s and proved (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Free variation and the intuition of geometric essences: Some reflections on phenomenology and modern geometry.Richard Tieszen - 2005 - Philosophy and Phenomenological Research 70 (1):153–173.
    Edmund Husserl has argued that we can intuit essences and, moreover, that it is possible to formulate a method for intuiting essences. Husserl calls this method 'ideation'. In this paper I bring a fresh perspective to bear on these claims by illustrating them in connection with some examples from modern pure geometry. I follow Husserl in describing geometric essences as invariants through different types of free variations and I then link this to the mapping out of geometric invariants in modern (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On geometric objects, the non-existence of a gravitational stress-energy tensor, and the uniqueness of the Einstein field equation.Erik Curiel - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:90-102.
    The question of the existence of gravitational stress-energy in general relativity has exercised investigators in the field since the inception of the theory. Folklore has it that no adequate definition of a localized gravitational stress-energetic quantity can be given. Most arguments to that effect invoke one version or another of the Principle of Equivalence. I argue that not only are such arguments of necessity vague and hand-waving but, worse, are beside the point and do not address the heart of the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Would two dimensions be world enough for spacetime?Samuel C. Fletcher, J. B. Manchak, Mike D. Schneider & James Owen Weatherall - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:100-113.
    We consider various curious features of general relativity, and relativistic field theory, in two spacetime dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newtonian limit; the status of the cosmological constant; and the character of matter fields, including perfect fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of physics in different dimensions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Erich Kretschmann as a proto-logical-empiricist: Adventures and misadventures of the point-coincidence argument.Marco Giovanelli - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):115-134.
    The present paper attempts to show that a 1915 article by Erich Kretschmann must be credited not only for being the source of Einstein’s point-coincidence remark, but also for having anticipated the main lines of the logical-empiricist interpretation of general relativity. Whereas Kretschmann was inspired by the work of Mach and Poincaré, Einstein inserted Kretschmann’s point-coincidence parlance into the context of Ricci and Levi-Civita’s absolute differential calculus. Kretschmann himself realized this and turned the point-coincidence argument against Einstein in his second (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The philosophical background of Weyl's mathematical constructivism.Richard Tieszen - 2000 - Philosophia Mathematica 8 (3):274-301.
    Weyl's inclination toward constructivism in the foundations of mathematics runs through his entire career, starting with Das Kontinuum. Why was Weyl inclined toward constructivism? I argue that Weyl's general views on foundations were shaped by a type of transcendental idealism in which it is held that mathematical knowledge must be founded on intuition. Kant and Fichte had an impact on Weyl but HusserFs transcendental idealism was even more influential. I discuss Weyl's views on vicious circularity, existence claims, meaning, the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • What represents space-time? And what follows for substantivalism vs. relationalism and gravitational energy?J. Brian Pitts - 2022 - In Antonio Vassallo, The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge.
    The questions of what represents space-time in GR, the status of gravitational energy, the substantivalist-relationalist issue, and the exceptional status of gravity are interrelated. If space-time has energy-momentum, then space-time is substantival. Two extant ways to avoid the substantivalist conclusion deny that the energy-bearing metric is part of space-time or deny that gravitational energy exists. Feynman linked doubts about gravitational energy to GR-exceptionalism, as do Curiel and Duerr; particle physics egalitarianism encourages realism about gravitational energy. In that spirit, this essay (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Riemann–Weyl in Deleuze's Bergsonism and the Constitution of the Contemporary Physico-Mathematical Space.Martin Calamari - 2015 - Deleuze and Guatarri Studies 9 (1):59-87.
    In recent years, the ideas of the mathematician Bernhard Riemann have come to the fore as one of Deleuze's principal sources of inspiration in regard to his engagements with mathematics, and the history of mathematics. Nevertheless, some relevant aspects and implications of Deleuze's philosophical reception and appropriation of Riemann's thought remain unexplored. In the first part of the paper I will begin by reconsidering the first explicit mention of Riemann in Deleuze's work, namely, in the second chapter of Bergsonism. In (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Becker–Blaschke problem of space.Julien Bernard - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):251-266.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The falsifiability of theories: Total or partial? A contemporary evaluation of the Duhem-Quine thesis.Adolf Grünbaum - 1962 - Synthese 14 (1):17 - 34.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Pre-Reflective Self-Consciousness & Projective Geometry.Kenneth Williford, Daniel Bennequin & David Rudrauf - 2022 - Review of Philosophy and Psychology 13 (2):365-396.
    We argue that the projective geometrical component of the Projective Consciousness Model can account for key aspects of pre-reflective self-consciousness and can relate PRSC intelligibly to another signal feature of subjectivity: perspectival character or point of view. We illustrate how the projective geometrical versions of the concepts of duality, reciprocity, polarity, closedness, closure, and unboundedness answer to salient aspects of the phenomenology of PRSC. We thus show that the same mathematics that accounts for the statics and dynamics of perspectival character (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometry and Motion in General Relativity.James Owen Weatherall - unknown
    A classic problem in general relativity, long studied by both physicists and philosophers of physics, concerns whether the geodesic principle may be derived from other principles of the theory, or must be posited independently. In a recent paper [Geroch & Weatherall, "The Motion of Small Bodies in Space-Time", Comm. Math. Phys. ], Bob Geroch and I have introduced a new approach to this problem, based on a notion we call "tracking". In the present paper, I situate the main results of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Gravity and Phenomenological Philosophy.Steven M. Rosen - 2008 - Foundations of Physics 38 (6):556-582.
    The central thesis of this paper is that contemporary theoretical physics is grounded in philosophical presuppositions that make it difficult to effectively address the problems of subject-object interaction and discontinuity inherent to quantum gravity. The core objectivist assumption implicit in relativity theory and quantum mechanics is uncovered and we see that, in string theory, this assumption leads into contradiction. To address this challenge, a new philosophical foundation is proposed based on the phenomenology of Maurice Merleau-Ponty and Martin Heidegger. Then, through (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Husserl on Geometry and Spatial Representation.Jairo José da Silva - 2012 - Axiomathes 22 (1):5-30.
    Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the interpretation of the relativistic quantum mechanics with invariant evolution parameter.Matej Pavšič - 1991 - Foundations of Physics 21 (9):1005-1019.
    The relativistic quantum mechanics with Lorentz-invariant evolution parameter and indefinite mass is a very elegant theory. But it cannot be derived by quantizing the usual classical relativity in which there is the mass-shell constraint. In this paper the classical theory is modified so that it remains Lorentz invariant, but the constraint disappears; mass is no longer fixed—it is an arbitrary constant of motion. The quantization of this unconstrained theory gives the relativistic quantum mechanics in which wave functions are localized and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Derivation of the Dirac Equation by Conformal Differential Geometry.Enrico Santamato & Francesco De Martini - 2013 - Foundations of Physics 43 (5):631-641.
    A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A comment on Mermin's “Understanding Einstein's 1905 derivation of E=mc2”.Hans C. Ohanian - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (3):215-217.
    N. D. Mermin has proposed an “elaboration” of Einstein's 1905 derivation that supposedly fixes the flaws that I identified in this derivation. By specific examples taken from Einstein's own later work, I show that Mermin's elaboration is fraught with misconceptions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Husserl on Geometry and Spatial Representation.Jairo José Silva - 2012 - Axiomathes 22 (1):5-30.
    Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Temporal Non-locality.Thomas Filk - 2013 - Foundations of Physics 43 (4):533-547.
    In this article I investigate several possibilities to define the concept of “temporal non-locality” within the standard framework of quantum theory. In particular, I analyze the notions of “temporally non-local states”, “temporally non-local events” and “temporally non-local observables”. The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bohr and the Photon.John Stachel - 2009 - In Wayne C. Myrvold & Joy Christian, Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 69--83.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Searches for the origins of the epistemological concept of model in mathematics.Gert Schubring - 2017 - Archive for History of Exact Sciences 71 (3):245-278.
    When did the concept of model begin to be used in mathematics? This question appears at first somewhat surprising since “model” is such a standard term now in the discourse on mathematics and “modelling” such a standard activity that it seems to be well established since long. The paper shows that the term— in the intended epistemological meaning—emerged rather recently and tries to reveal in which mathematical contexts it became established. The paper discusses various layers of argumentations and reflections in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Temporally symmetric causal relations in Minkowski space-time.George Berger - 1972 - Synthese 24 (1-2):58 - 73.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Conventionality of Simultaneity in Special Relativity.Marco Mamone Capria - 2001 - Foundations of Physics 31 (5):775-818.
    In this paper the classical topic of “conventionality” in defining the simultaneity (or synchrony) of distant events is tackled again, and the validity of Reichenbach's view is carefully circumscribed. In particular, the role of “one-way” assumptions in the foundations of special relativity is emphasized. The restriction by the round-trip isotropy condition on the admissible distance functions in inertial frames is studied, and its relevance to several issues (absolute simultaneity, the interpretation of Michelson–Morley type experiments, the self-measured speed of a clock) (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Inducing the Cosmological Constant from Five-Dimensional Weyl Space.José Edgar Madriz Aguilar & Carlos Romero - 2009 - Foundations of Physics 39 (11):1205-1216.
    We investigate the possibility of inducing the cosmological constant from extra dimensions by embedding our four-dimensional Riemannian space-time into a five-dimensional Weyl integrable space. Following the approach of the space-time-matter theory we show that when we go down from five to four dimensions, the Weyl field may contribute both to the induced energy-tensor as well as to the cosmological constant Λ, or more generally, it may generate a time-dependent cosmological parameter Λ(t). As an application, we construct a simple cosmological model (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Argument from Physics and General Relativity.Christopher Gregory Weaver - 2020 - Erkenntnis 85 (2):333-373.
    I argue that the best interpretation of the general theory of relativity has need of a causal entity, and causal structure that is not reducible to light cone structure. I suggest that this causal interpretation of GTR helps defeat a key premise in one of the most popular arguments for causal reductionism, viz., the argument from physics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Being, Becoming and the Undivided Universe: A Dialogue Between Relational Blockworld and the Implicate Order Concerning the Unification of Relativity and Quantum Theory.Michael Silberstein, W. M. Stuckey & Timothy McDevitt - 2013 - Foundations of Physics 43 (4):502-532.
    In this paper two different approaches to unification will be compared, Relational Blockworld (RBW) and Hiley’s implicate order. Both approaches are monistic in that they attempt to derive matter and spacetime geometry ‘at once’ in an interdependent and background independent fashion from something underneath both quantum theory and relativity. Hiley’s monism resides in the implicate order via Clifford algebras and is based on process as fundamental while RBW’s monism resides in spacetimematter via path integrals over graphs whereby space, time and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conformally Flat Spacetimes and Weyl Frames.C. Romero, J. B. Fonseca-Neto & M. Laura Pucheu - 2012 - Foundations of Physics 42 (2):224-240.
    We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophie transcendantale et objectivité physique.Jean Petitot - 1997 - Philosophiques 24 (2):367-388.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reflections on the deBroglie–Bohm Quantum Potential.Peter J. Riggs - 2008 - Erkenntnis 68 (1):21-39.
    The deBroglie–Bohm quantum potential is the potential energy function of the wave field. The quantum potential facilitates the transference of energy from wave field to particle and back again which accounts for energy conservation in isolated quantum systems. Factors affecting energy exchanges and the form of the quantum potential are discussed together with the related issues of the absence of a source term for the wave field and the lack of a classical back reaction.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are perceptual fields quantum fields?Brian Flanagan - 2003 - Neuroquantology 3:334-364.
    I argue that our sensory fields are photon fields. The philosophical foundation here is informed by mind/brain identity theory, such as we find in Russell, Feigl, Lockwood and Chalmers. In brief, given Dyson's observation that all material things consist of quantum fields, and given an identity of mind and brain, our sensory fields are then most plausibly photon fields.
    Download  
     
    Export citation  
     
    Bookmark  
  • Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof of the Spin–Statistics Theorem.Enrico Santamato & Francesco De Martini - 2015 - Foundations of Physics 45 (7):858-873.
    The traditional standard quantum mechanics theory is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle”. A complete and straightforward solution of the spin–statistics problem is presented on the basis of the “conformal quantum geometrodynamics” theory. This theory provides a Weyl-gauge invariant formulation of the standard quantum mechanics and reproduces successfully all relevant quantum processes including the formulation of Dirac’s or Schrödinger’s equation, of Heisenberg’s uncertainty relations and of the nonlocal EPR correlations. When the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation