Switch to: Citations

Add references

You must login to add references.
  1. Proper Forcings and Absoluteness in LProper Forcing and L.Paul B. Larson, Itay Neeman & Jindrich Zapletal - 2002 - Bulletin of Symbolic Logic 8 (4):548.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Set Theory.Keith J. Devlin - 1981 - Journal of Symbolic Logic 46 (4):876-877.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • No Elementary Embedding from V into V is Definable from Parameters.Akira Suzuki - 1999 - Journal of Symbolic Logic 64 (4):1591-1594.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Closed maximality principles: implications, separations and combinations.Gunter Fuchs - 2008 - Journal of Symbolic Logic 73 (1):276-308.
    l investigate versions of the Maximality Principles for the classes of forcings which are <κ-closed. <κ-directed-closed, or of the form Col (κ. <Λ). These principles come in many variants, depending on the parameters which are allowed. I shall write MPΓ(A) for the maximality principle for forcings in Γ, with parameters from A. The main results of this paper are: • The principles have many consequences, such as <κ-closed-generic $\Sigma _{2}^{1}(H_{\kappa})$ absoluteness, and imply. e.g., that ◇κ holds. I give an application (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Proper forcing and l(ℝ).Itay Neeman & Jindrich Zapletal - 2001 - Journal of Symbolic Logic 66 (2):801-810.
    We present two ways in which the model L(R) is canonical assuming the existence of large cardinals. We show that the theory of this model, with ordinal parameters, cannot be changed by small forcing; we show further that a set of ordinals in V cannot be added to L(R) by small forcing. The large cardinal needed corresponds to the consistency strength of AD L (R); roughly ω Woodin cardinals.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Set theory.Thomas Jech - 1981 - Journal of Symbolic Logic.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (1 other version)[Omnibus Review].Akihiro Kanamori - 1981 - Journal of Symbolic Logic 46 (4):864-866.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Iterating ordinal definability.Wlodzimierz Zadrozny - 1983 - Annals of Mathematical Logic 24 (3):263-310.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On elementary embeddings from an inner model to the universe.J. Vickers & P. D. Welch - 2001 - Journal of Symbolic Logic 66 (3):1090-1116.
    We consider the following question of Kunen: Does Con(ZFC + ∃M a transitive inner model and a non-trivial elementary embedding j: M $\longrightarrow$ V) imply Con (ZFC + ∃ a measurable cardinal)? We use core model theory to investigate consequences of the existence of such a j: M → V. We prove, amongst other things, the existence of such an embedding implies that the core model K is a model of "there exists a proper class of almost Ramsey cardinals". Conversely, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations