Switch to: Citations

Add references

You must login to add references.
  1. The philosophy of information.Luciano Floridi - 2011 - New York: Oxford University Press.
    Luciano Floridi presents a book that will set the agenda for the philosophy of information. PI is the philosophical field concerned with the critical investigation of the conceptual nature and basic principles of information, including its dynamics, utilisation, and sciences, and the elaboration and application of information-theoretic and computational methodologies to philosophical problems. This book lays down, for the first time, the conceptual foundations for this new area of research. It does so systematically, by pursuing three goals. Its metatheoretical goal (...)
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Mechanistic artefact explanation.Jeroen de Ridder - 2006 - Studies in History and Philosophy of Science Part A 37 (1):81-96.
    One thing about technical artefacts that needs to be explained is how their physical make-up, or structure, enables them to fulfil the behaviour associated with their function, or, more colloquially, how they work. In this paper I develop an account of such explanations based on the familiar notion of mechanistic explanation. To accomplish this, I outline two explanatory strategies that provide two different types of insight into an artefact’s functioning, and show how human action inevitably plays a role in artefact (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   207 citations  
  • An Unsolvable Problem of Elementary Number Theory.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):73-74.
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   552 citations  
  • Processes of Life: Essays in the Philosophy of Biology.John Dupré - 2011 - Oxford, GB: Oxford University Press.
    John Dupr explores recent revolutionary developments in biology and considers their relevance for our understanding of human nature and society. He reveals how the advance of genetic science is changing our view of the constituents of life, and shows how an understanding of microbiology will overturn standard assumptions about the living world.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Processes of Life: Essays in the Philosophy of Biology.John Dupré - 2011 - New York: Oxford University Press UK.
    John Dupré explores recent revolutionary developments in biology and considers their relevance for our understanding of human nature and human society. Epigenetics and related areas of molecular biology have eroded the exceptional status of the gene and presented the genome as fully interactive with the rest of the cell. Developmental systems theory provides a space for a vision of evolution that takes full account of the fundamental importance of developmental processes. Dupré shows the importance of microbiology for a proper understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • A Mathematical Theory of Communication.Claude Elwood Shannon - 1948 - Bell System Technical Journal 27 (April 1924):379–423.
    The mathematical theory of communication.
    Download  
     
    Export citation  
     
    Bookmark   1189 citations  
  • Philosophy of Technology and Engineering Sciences.Anthonie Meijers (ed.) - 2009 - Elsevier/North Holland.
    The Handbook Philosophy of Technology and Engineering Sciences addresses numerous issues in the emerging field of the philosophy of those sciences that are involved in the technological process of designing, developing and making of new technical artifacts and systems. These issues include the nature of design, of technological knowledge, and of technical artifacts, as well as the toolbox of engineers. Most of these have thus far not been analyzed in general philosophy of science, which has traditionally but inadequately regarded technology (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   710 citations  
  • A Modified Conception of Mechanisms.Phillip J. Torres - 2009 - Erkenntnis 71 (2):233-251.
    In this paper, I critique two conceptions of mechanisms, namely those put forth by Stuart Glennan (Erkenntnis 44:49–71, 1996; Philosophy of Science 69:S342–S353, 2002) and Machamer et al. (Philosophy of Science 67:1–25, 2000). Glennan’s conception, I argue, cannot account for mechanisms involving negative causation because of its interactionist posture. MDC’s view encounters the same problem due to its reificatory conception of activities—this conception, I argue, entails an onerous commitment to ontological dualism. In the place of Glennan and MDC, I propose (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Computing as a Science: A Survey of Competing Viewpoints. [REVIEW]Matti Tedre - 2011 - Minds and Machines 21 (3):361-387.
    Since the birth of computing as an academic discipline, the disciplinary identity of computing has been debated fiercely. The most heated question has concerned the scientific status of computing. Some consider computing to be a natural science and some consider it to be an experimental science. Others argue that computing is bad science, whereas some say that computing is not a science at all. This survey article presents viewpoints for and against computing as a science. Those viewpoints are analyzed against (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Synthesizing activities and interactions in the concept of a mechanism.James G. Tabery - 2004 - Philosophy of Science 71 (1):1-15.
    Stuart Glennan, and the team of Peter Machamer, Lindley Darden, and Carl Craver have recently provided two accounts of the concept of a mechanism. The main difference between these two versions rests on how the behavior of the parts of the mechanism is conceptualized. Glennan considers mechanisms to be an interaction of parts, where the interaction between parts can be characterized by direct, invariant, change-relating generalizations. Machamer, Darden, and Craver criticize traditional conceptualizations of mechanisms which are based solely on parts (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Computing and Experiments: A Methodological View on the Debate on the Scientific Nature of Computing.Viola Schiaffonati & Mario Verdicchio - 2014 - Philosophy and Technology 27 (3):359-376.
    The question about the scientific nature of computing has been widely debated with no universal consensus reached about its disciplinary status. Positions vary from acknowledging computing as the science of computers to defining it as a synthetic engineering discipline. In this paper, we aim at discussing the nature of computing from a methodological perspective. We consider, in particular, the nature and role of experiments in this field, whether they can be considered close to the traditional experimental scientific method or, instead, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why Separation Logic Works.David Pym, Jonathan M. Spring & Peter O’Hearn - 2019 - Philosophy and Technology 32 (3):483-516.
    One might poetically muse that computers have the essence both of logic and machines. Through the case of the history of Separation Logic, we explore how this assertion is more than idle poetry. Separation Logic works because it merges the software engineer’s conceptual model of a program’s manipulation of computer memory with the logical model that interprets what sentences in the logic are true, and because it has a proof theory which aids in the crucial problem of scaling the reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computation without representation.Gualtiero Piccinini - 2008 - Philosophical Studies 137 (2):205-241.
    The received view is that computational states are individuated at least in part by their semantic properties. I offer an alternative, according to which computational states are individuated by their functional properties. Functional properties are specified by a mechanistic explanation without appealing to any semantic properties. The primary purpose of this paper is to formulate the alternative view of computational individuation, point out that it supports a robust notion of computational explanation, and defend it on the grounds of how computational (...)
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Computing mechanisms.Gualtiero Piccinini - 2007 - Philosophy of Science 74 (4):501-526.
    This paper offers an account of what it is for a physical system to be a computing mechanism—a system that performs computations. A computing mechanism is a mechanism whose function is to generate output strings from input strings and (possibly) internal states, in accordance with a general rule that applies to all relevant strings and depends on the input strings and (possibly) internal states for its application. This account is motivated by reasons endogenous to the philosophy of computing, namely, doing (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1332 citations  
  • What is a mechanism? Thinking about mechanisms across the sciences.Phyllis Illari & Jon Williamson - 2012 - European Journal for Philosophy of Science 2 (1):119-135.
    After a decade of intense debate about mechanisms, there is still no consensus characterization. In this paper we argue for a characterization that applies widely to mechanisms across the sciences. We examine and defend our disagreements with the major current contenders for characterizations of mechanisms. Ultimately, we indicate that the major contenders can all sign up to our characterization.
    Download  
     
    Export citation  
     
    Bookmark   188 citations  
  • Exploring a Mechanistic Approach to Experimentation in Computing.Eric Hatleback & Jonathan M. Spring - 2014 - Philosophy and Technology 27 (3):441-459.
    The mechanistic approach in philosophy of science contributes to our understanding of experimental design. Applying the mechanistic approach to experimentation in computing is beneficial for two reasons. It connects the methodology of experimentation in computing with the methodology of experimentation in established sciences, thereby strengthening the scientific reputability of computing and the quality of experimental design therein. Furthermore, it pinpoints the idiosyncrasies of experimentation in computing: computing deals closely with both natural and engineered mechanisms. Better understanding of the idiosyncrasies, which (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   394 citations  
  • Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   409 citations  
  • Mechanisms and the nature of causation.Stuart S. Glennan - 1996 - Erkenntnis 44 (1):49--71.
    In this paper I offer an analysis of causation based upon a theory of mechanisms-complex systems whose internal parts interact to produce a system's external behavior. I argue that all but the fundamental laws of physics can be explained by reference to mechanisms. Mechanisms provide an epistemologically unproblematic way to explain the necessity which is often taken to distinguish laws from other generalizations. This account of necessity leads to a theory of causation according to which events are causally related when (...)
    Download  
     
    Export citation  
     
    Bookmark   435 citations  
  • Modeling mechanisms.Stuart Glennan - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):443-464.
    Philosophers of science increasingly believe that much of science is concerned with understanding the mechanisms responsible for the production of natural phenomena. An adequate understanding of scientific research requires an account of how scientists develop and test models of mechanisms. This paper offers a general account of the nature of mechanical models, discussing the representational relationship that holds between mechanisms and their models as well as the techniques that can be used to test and refine such models. The analysis is (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Miscomputation.Nir Fresco & Giuseppe Primiero - 2013 - Philosophy and Technology 26 (3):253-272.
    The phenomenon of digital computation is explained (often differently) in computer science, computer engineering and more broadly in cognitive science. Although the semantics and implications of malfunctions have received attention in the philosophy of biology and philosophy of technology, errors in computational systems remain of interest only to computer science. Miscomputation has not gotten the philosophical attention it deserves. Our paper fills this gap by offering a taxonomy of miscomputations. This taxonomy is underpinned by a conceptual analysis of the design (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Mechanistic Miscomputation: a Reply to Fresco and Primiero.Joe Dewhurst - 2014 - Philosophy and Technology 27 (3):495-498.
    Fresco and Primiero’s recent article, ‘Miscomputation’ , provides a useful framework with which to think about miscomputation, as well as an admirably broad taxonomy of different kinds of miscomputation. However, it also misconstrues the mechanistic approach to miscomputation, which I will argue should not recognise design errors as miscomputations per se. I argue that a computing mechanism, if it is functioning correctly in the physical sense, cannot miscompute on the basis of an error made by an external agent, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The sciences of the artificial.Herbert Alexander Simon - 1969 - [Cambridge,: M.I.T. Press.
    Continuing his exploration of the organization of complexity and the science of design, this new edition of Herbert Simon's classic work on artificial ...
    Download  
     
    Export citation  
     
    Bookmark   936 citations  
  • The Mathematical Theory of Communication.Claude E. Shannon & Warren Weaver - 1949 - University of Illinois Press.
    Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored (...)
    Download  
     
    Export citation  
     
    Bookmark   641 citations  
  • Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in divergent (...)
    Download  
     
    Export citation  
     
    Bookmark   522 citations  
  • Explaining the brain: mechanisms and the mosaic unity of neuroscience.Carl F. Craver - 2007 - New York : Oxford University Press,: Oxford University Press, Clarendon Press.
    Carl Craver investigates what we are doing when we sue neuroscience to explain what's going on in the brain.
    Download  
     
    Export citation  
     
    Bookmark   622 citations  
  • The philosophy of information.Luciano Floridi - 2010 - The Philosophers' Magazine 50:42-43.
    Download  
     
    Export citation  
     
    Bookmark   216 citations