Switch to: References

Add citations

You must login to add citations.
  1. Inquiries into Cognition: Wittgenstein’s Language-Games and Peirce’s Semeiosis for the Philosophy of Cognition.Andrey Pukhaev - 2013 - Dissertation, Gregorian University
    SUMMARY Major theories of philosophical psychology and philosophy of mind are examined on the basis of the fundamental questions of ontology, metaphysics, epistemology, semantics and logic. The result is the choice between language of eliminative reductionism and dualism, neither of which answers properly the relation between mind and body. In the search for a non–dualistic and non–reductive language, Wittgenstein’s notion of language–games as the representative links between language and the world is considered together with Peirce’s semeiosis of cognition. The result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Machine intelligence: a chimera.Mihai Nadin - 2019 - AI and Society 34 (2):215-242.
    The notion of computation has changed the world more than any previous expressions of knowledge. However, as know-how in its particular algorithmic embodiment, computation is closed to meaning. Therefore, computer-based data processing can only mimic life’s creative aspects, without being creative itself. AI’s current record of accomplishments shows that it automates tasks associated with intelligence, without being intelligent itself. Mistaking the abstract for the concrete has led to the religion of “everything is an output of computation”—even the humankind that conceived (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Almost Ideal: Computational Epistemology and the Limits of Rationality for Finite Reasoners.Danilo Fraga Dantas - 2016 - Dissertation, University of California, Davis
    The notion of an ideal reasoner has several uses in epistemology. Often, ideal reasoners are used as a parameter of (maximum) rationality for finite reasoners (e.g. humans). However, the notion of an ideal reasoner is normally construed in such a high degree of idealization (e.g. infinite/unbounded memory) that this use is unadvised. In this dissertation, I investigate the conditions under which an ideal reasoner may be used as a parameter of rationality for finite reasoners. In addition, I present and justify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fixed Points in the Hyperintensional Epistemic $\mu$-Calculus and the KK Principle.David Elohim - manuscript
    This essay provides a novel account of iterated epistemic states. The essay argues that states of epistemic determinacy might be secured by countenancing iterated epistemic states on the model of fixed points in the modal $\mu$-calculus. Despite the epistemic indeterminacy witnessed by the invalidation of modal axiom 4 in the sorites paradox -- i.e. the KK principle: $\square$$\phi$ $\rightarrow$ $\square$$\square$$\phi$ -- a hyperintensional epistemic $\mu$-automaton permits fixed points to entrain a principled means by which to iterate epistemic states and account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypercomputation and the Physical Church‐Turing Thesis.Paolo Cotogno - 2003 - British Journal for the Philosophy of Science 54 (2):181-223.
    A version of the Church-Turing Thesis states that every effectively realizable physical system can be simulated by Turing Machines (‘Thesis P’). In this formulation the Thesis appears to be an empirical hypothesis, subject to physical falsification. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non-well-founded, analog, quantum, and retrocausal computation. The conclusions are that these models reduce to supertasks, i.e. infinite computation, and that even supertasks are no solution for recursive incomputability. This yields that the realization (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Deviant encodings and Turing’s analysis of computability.B. Jack Copeland & Diane Proudfoot - 2010 - Studies in History and Philosophy of Science Part A 41 (3):247-252.
    Turing’s analysis of computability has recently been challenged; it is claimed that it is circular to analyse the intuitive concept of numerical computability in terms of the Turing machine. This claim threatens the view, canonical in mathematics and cognitive science, that the concept of a systematic procedure or algorithm is to be explicated by reference to the capacities of Turing machines. We defend Turing’s analysis against the challenge of ‘deviant encodings’.Keywords: Systematic procedure; Turing machine; Church–Turing thesis; Deviant encoding; Acceptable encoding; (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontology of Digital Physics.Anderson Beraldo-de-Araújo & Lorenzo Baravalle - 2017 - Erkenntnis 82 (6):1211-1231.
    Digital physics claims that the entire universe is, at the very bottom, made out of bits; as a result, all physical processes are intrinsically computational. For that reason, many digital physicists go further and affirm that the universe is indeed a giant computer. The aim of this article is to make explicit the ontological assumptions underlying such a view. Our main concern is to clarify what kind of properties the universe must instantiate in order to perform computations. We analyse the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Does Homotopy Type Theory Provide a Foundation for Mathematics?James Ladyman & Stuart Presnell - 2016 - British Journal for the Philosophy of Science:axw006.
    Homotopy Type Theory is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • What is morphological computation? On how the body contributes to cognition and control.Vincent Müller & Matej Hoffmann - 2017 - Artificial Life 23 (1):1-24.
    The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “off-loading computation from the brain to the body”, where the body is said to perform “morphological computation”. Our investigation of four characteristic cases of morphological computation in animals and robots shows that the ‘off-loading’ perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Comprehension of Simple Quantifiers: Empirical Evaluation of a Computational Model.Jakub Szymanik & Marcin Zajenkowski - 2010 - Cognitive Science 34 (3):521-532.
    We examine the verification of simple quantifiers in natural language from a computational model perspective. We refer to previous neuropsychological investigations of the same problem and suggest extending their experimental setting. Moreover, we give some direct empirical evidence linking computational complexity predictions with cognitive reality.<br>In the empirical study we compare time needed for understanding different types of quantifiers. We show that the computational distinction between quantifiers recognized by finite-automata and push-down automata is psychologically relevant. Our research improves upon hypothesis and (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Computationalism, The Church–Turing Thesis, and the Church–Turing Fallacy.Gualtiero Piccinini - 2007 - Synthese 154 (1):97-120.
    The Church–Turing Thesis (CTT) is often employed in arguments for computationalism. I scrutinize the most prominent of such arguments in light of recent work on CTT and argue that they are unsound. Although CTT does nothing to support computationalism, it is not irrelevant to it. By eliminating misunderstandings about the relationship between CTT and computationalism, we deepen our appreciation of computationalism as an empirical hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • When Logic Meets Engineering: Introduction to Logical Issues in the History and Philosophy of Computer Science.Liesbeth De Mol & Giuseppe Primiero - 2015 - History and Philosophy of Logic 36 (3):195-204.
    The birth, growth, stabilization and subsequent understanding of a new field of practical and theoretical enquiry is always a conceptual process including several typologies of events, phenomena an...
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Representation and Invariance of Scientific Structures.Patrick Suppes - 2002 - CSLI Publications (distributed by Chicago University Press).
    An early, very preliminary edition of this book was circulated in 1962 under the title Set-theoretical Structures in Science. There are many reasons for maintaining that such structures play a role in the philosophy of science. Perhaps the best is that they provide the right setting for investigating problems of representation and invariance in any systematic part of science, past or present. Examples are easy to cite. Sophisticated analysis of the nature of representation in perception is to be found already (...)
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • Computable Diagonalizations and Turing’s Cardinality Paradox.Dale Jacquette - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):239-262.
    A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of Brouwer and Heyting.Joan Rand Moschovakis - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 77-125.
    Download  
     
    Export citation  
     
    Bookmark  
  • Typed lambda calculus.Henk P. Barendregt, Wil Dekkers & Richard Statman - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 1091--1132.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Universe as quantum computer.Seth Lloyd - 1997 - Complexity 3 (1):32-35.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The cognitive architecture for chaining of two mental operations.Jérôme Sackur & Stanislas Dehaene - 2009 - Cognition 111 (2):187-211.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Single-tape and multi-tape Turing machines through the lens of the Grossone methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation and the instrument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semiotic Systems, Computers, and the Mind: How Cognition Could Be Computing.William J. Rapaport - 2012 - International Journal of Signs and Semiotic Systems 2 (1):32-71.
    In this reply to James H. Fetzer’s “Minds and Machines: Limits to Simulations of Thought and Action”, I argue that computationalism should not be the view that (human) cognition is computation, but that it should be the view that cognition (simpliciter) is computable. It follows that computationalism can be true even if (human) cognition is not the result of computations in the brain. I also argue that, if semiotic systems are systems that interpret signs, then both humans and computers are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Alonzo church:his life, his work and some of his miracles.Maía Manzano - 1997 - History and Philosophy of Logic 18 (4):211-232.
    This paper is dedicated to Alonzo Church, who died in August 1995 after a long life devoted to logic. To Church we owe lambda calculus, the thesis bearing his name and the solution to the Entscheidungsproblem.His well-known book Introduction to Mathematical LogicI, defined the subject matter of mathematical logic, the approach to be taken and the basic topics addressed. Church was the creator of the Journal of Symbolic Logicthe best-known journal of the area, which he edited for several decades This (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Information processing, computation, and cognition.Gualtiero Piccinini & Andrea Scarantino - 2011 - Journal of Biological Physics 37 (1):1-38.
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mitä uutta modernissa logiikassa?Panu Raatikainen - 2004 - In Raatikainen Panu (ed.), Filosofisia tutkielmia – Philosophical Studies in honorem Leila Haaparanta. Tampere University Press.
    logiikka on lopullinen ja täydellinen logiikka. Sittemmin logiikka on kuitenkin kokenut melkoisen mullistuksen. Käsitykset siitä, mikä tässä muutoksessa oli olennaista ja milloin se todella tapahtui, vaihtelevat.
    Download  
     
    Export citation  
     
    Bookmark  
  • Laskettavuuden teorian varhaishistoria.Panu Raatikainen - 1995 - In Älyn oppihistoria – matka logiikan, psykologian ja tekoälyn juurille. Espoo: Finnish Artificial Intelligence Society.
    Nykyaikaisen logiikan keskeisenä tutkimuskohteena ovat erilaiset formalisoidut teoriat. Erityisesti vuosisadan vaihteen aikoihin matematiikan perusteiden tutkimuksessa ilmaantuneiden hämmentävien paradoksien (Russell 1902, 1903) jälkeen (ks. kuitenkin jo Frege 1879, Dedekind 1888, Peano 1889; vrt. Wang 1957) keskeiset matemaattiset teoriat on pyritty tällaisten vaikeuksien välttämiseksi uudelleen muotoilemaan täsmällisesti keinotekoisessa symbolikielessä, jonka lauseenmuodostussäännöt on täsmällisesti ja yksikäsitteisesti määrätty. Edelleen teoriat on pyritty aksiomatisoimaan, ts. on pyritty antamaan joukko peruslauseita, joista kaikki muut - tai ainakin mahdollisimman monet - teorian todet lauseet voidaan loogisesti johtaa tarkoin (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Relations vs functions at the foundations of logic: type-theoretic considerations.Paul Oppenheimer & Edward N. Zalta - 2011 - Journal of Logic and Computation 21:351-374.
    Though Frege was interested primarily in reducing mathematics to logic, he succeeded in reducing an important part of logic to mathematics by defining relations in terms of functions. By contrast, Whitehead & Russell reduced an important part of mathematics to logic by defining functions in terms of relations (using the definite description operator). We argue that there is a reason to prefer Whitehead & Russell's reduction of functions to relations over Frege's reduction of relations to functions. There is an interesting (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A critique of information processing theories of consciousness.Valerie Gray Hardcastle - 1995 - Minds and Machines 5 (1):89-107.
    Information processing theories in psychology give rise to executive theories of consciousness. Roughly speaking, these theories maintain that consciousness is a centralized processor that we use when processing novel or complex stimuli. The computational assumptions driving the executive theories are closely tied to the computer metaphor. However, those who take the metaphor serious — as I believe psychologists who advocate the executive theories do — end up accepting too particular a notion of a computing device. In this essay, I examine (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is the church-Turing thesis true?Carol E. Cleland - 1993 - Minds and Machines 3 (3):283-312.
    The Church-Turing thesis makes a bold claim about the theoretical limits to computation. It is based upon independent analyses of the general notion of an effective procedure proposed by Alan Turing and Alonzo Church in the 1930''s. As originally construed, the thesis applied only to the number theoretic functions; it amounted to the claim that there were no number theoretic functions which couldn''t be computed by a Turing machine but could be computed by means of some other kind of effective (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • The computational theory of mind.Steven Horst - 2005 - Stanford Encyclopedia of Philosophy.
    Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay is concerned with a particular philosophical view that holds that the mind literally is a digital computer (in a specific sense of “computer” to be developed), and that thought literally is a kind of computation. This view—which will be called the “Computational Theory of Mind” (CTM)—is thus to be distinguished from other and broader attempts to connect the mind with computation, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Computing machinery and intelligence.Alan Turing - 1950 - Mind 59 (236):433-60.
    I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to (...)
    Download  
     
    Export citation  
     
    Bookmark   1072 citations  
  • Consciousness qua Mortal Computation.Kleiner Johannes - manuscript
    Computational functionalism posits that consciousness is a computation. Here we show, perhaps surprisingly, that it cannot be a Turing computation. Rather, computational functionalism implies that consciousness is a novel type of computation that has recently been proposed by Geoffrey Hinton, called mortal computation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Tercera Cultura: #TheLibro - Una brevísima introducción a las Ciencias Cognitivas y a la Tercera Cultura.Remis Ramos - 2015 - Santiago: Tercera Cultura.
    Tercera Cultura: #TheLibro es una introducción a las ciencias cognitivas -Psicología, Lingüística, Filosofía, Neurociencia, Antropología, Inteligencia Artificial- escrita en un lenguaje simple y claro, ilustrado con ejemplos de la cultura popular, dirigido a estudiantes y geeks de todas las edades.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hintikka’s conception of syntheticity as the introduction of new individuals.Costanza Larese - 2023 - Synthese 201 (6):1-33.
    In a series of papers published in the sixties and seventies, Jaakko Hintikka, drawing upon Kant’s conception, defines an argument to be analytic whenever it does not introduce new individuals into the discussion and argues that there exists a class of arguments in polyadic first-order logic that are to be synthetic according to this sense. His work has been utterly overlooked in the literature. In this paper, I claim that the value of Hintikka’s contribution has been obscured by his formalisation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Decision Problem for Effective Procedures.Nathan Salmón - 2023 - Logica Universalis 17 (2):161-174.
    The “somewhat vague, intuitive” notion from computability theory of an effective procedure (method) or algorithm can be fairly precisely defined even if it is not sufficiently formal and precise to belong to mathematics proper (in a narrow sense)—and even if (as many have asserted) for that reason the Church–Turing thesis is unprovable. It is proved logically that the class of effective procedures is not decidable, i.e., that no effective procedure is possible for ascertaining whether a given procedure is effective. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective Procedures.Nathan Salmon - 2023 - Philosophies 8 (2):27.
    This is a non-technical version of "The Decision Problem for Effective Procedures." The “somewhat vague, intuitive” notion from computability theory of an effective procedure (method) or algorithm can be fairly precisely defined, even if it does not have a purely mathematical definition—and even if (as many have asserted) for that reason, the Church–Turing thesis (that the effectively calculable functions on natural numbers are exactly the general recursive functions), cannot be proved. However, it is logically provable from the notion of an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Making Up Our Minds: Imaginative Deconstruction in MathArt, 1920 – Present.Shanna Dobson & Chris Fields - manuscript
    The cognitive sciences tell us that the self is a construct. The visual arts illustrate this fact. Mathematics give it full expression, abstracting the self to a Grothendieck site. This self is a haecceity, an ephemeral this-ness and now-ness. We make up our minds and our histories. That our acts are public, that they communicate effectively, becomes a dialetheic paradox, a deep paradox for our times.
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction.Diego Gabriel Krivochen - 2021 - Evolutionary Linguistic Theory 3 (2):123-128.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computability, Notation, and de re Knowledge of Numbers.Stewart Shapiro, Eric Snyder & Richard Samuels - 2022 - Philosophies 1 (7):20.
    Saul Kripke once noted that there is a tight connection between computation and de re knowledge of whatever the computation acts upon. For example, the Euclidean algorithm can produce knowledge of which number is the greatest common divisor of two numbers. Arguably, algorithms operate directly on syntactic items, such as strings, and on numbers and the like only via how the numbers are represented. So we broach matters of notation. The purpose of this article is to explore the relationship between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hapoc 2013.Maarten Bullynck & Jean-Baptiste Joinet - unknown
    Download  
     
    Export citation  
     
    Bookmark