Switch to: Citations

Add references

You must login to add references.
  1. The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Global square sequences in extender models.Martin Zeman - 2010 - Annals of Pure and Applied Logic 161 (7):956-985.
    We present a construction of a global square sequence in extender models with λ-indexing.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Nontame mouse from the failure of square at a singular strong limit cardinal.Grigor Sargsyan - 2014 - Journal of Mathematical Logic 14 (1):1450003.
    Building on the work of Schimmerling [Coherent sequences and threads, Adv. Math.216 89–117] and Steel [PFA implies AD L, J. Symbolic Logic70 1255–1296], we show that the failure of square principle at a singular strong limit cardinal implies that there is a nontame mouse. The proof presented is the first inductive step beyond L of the core model induction that is aimed at getting a model of ADℝ + "Θ is regular" from the failure of square at a singular strong (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Saharon Shelah, Cardinal Arithmetic. [REVIEW]Saharon Shelah - 1998 - Studia Logica 60 (3):443-448.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (2 other versions)Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Combinatorial principles in the core model for one Woodin cardinal.Ernest Schimmerling - 1995 - Annals of Pure and Applied Logic 74 (2):153-201.
    We study the fine structure of the core model for one Woodin cardinal, building of the work of Mitchell and Steel on inner models of the form . We generalize to some combinatorial principles that were shown by Jensen to hold in L. We show that satisfies the statement: “□κ holds whenever κ the least measurable cardinal λ of order λ++”. We introduce a hierarchy of combinatorial principles □κ, λ for 1 λ κ such that □κ□κ, 1 □κ, λ □κ, (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Some exact equiconsistency results in set theory.Leo Harrington & Saharon Shelah - 1985 - Notre Dame Journal of Formal Logic 26 (2):178-188.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Reflecting stationary sets.Menachem Magidor - 1982 - Journal of Symbolic Logic 47 (4):755-771.
    We prove that the statement "For every pair A, B, stationary subsets of ω 2 , composed of points of cofinality ω, there exists an ordinal α such that both A ∩ α and $B \bigcap \alpha$ are stationary subsets of α" is equiconsistent with the existence of weakly compact cardinal. (This completes results of Baumgartner and Harrington and Shelah.) We also prove, assuming the existence of infinitely many supercompact cardinals, the statement "Every stationary subset of ω ω + 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Bounded stationary reflection II.Chris Lambie-Hanson - 2017 - Annals of Pure and Applied Logic 168 (1):50-71.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterization of □κin core models.Ernest Schimmerling & Martin Zeman - 2004 - Journal of Mathematical Logic 4 (01):1-72.
    We present a general construction of a □κ-sequence in Jensen's fine structural extender models. This construction yields a local definition of a canonical □κ-sequence as well as a characterization of those cardinals κ, for which the principle □κ fails. Such cardinals are called subcompact and can be described in terms of elementary embeddings. Our construction is carried out abstractly, making use only of a few fine structural properties of levels of the model, such as solidity and condensation.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Chain conditions of products, and weakly compact cardinals.Assaf Rinot - 2014 - Bulletin of Symbolic Logic 20 (3):293-314,.
    The history of productivity of the κ-chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal κ > א1, the principle □ is equivalent to the existence of a certain strong coloring c : [κ]2 → κ for which the family of fibers T is a nonspecial κ-Aronszajn tree. The theorem follows from an analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Squares and covering matrices.Chris Lambie-Hanson - 2014 - Annals of Pure and Applied Logic 165 (2):673-694.
    Viale introduced covering matrices in his proof that SCH follows from PFA. In the course of the proof and subsequent work with Sharon, he isolated two reflection principles, CP and S, which, under certain circumstances, are satisfied by all covering matrices of a certain shape. Using square sequences, we construct covering matrices for which CP and S fail. This leads naturally to an investigation of square principles intermediate between □κ and □ for a regular cardinal κ. We provide a detailed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Squares and narrow systems.Chris Lambie-Hanson - 2017 - Journal of Symbolic Logic 82 (3):834-859.
    A narrow system is a combinatorial object introduced by Magidor and Shelah in connection with work on the tree property at successors of singular cardinals. In analogy to the tree property, a cardinalκsatisfies thenarrow system propertyif every narrow system of heightκhas a cofinal branch. In this paper, we study connections between the narrow system property, square principles, and forcing axioms. We prove, assuming large cardinals, both that it is consistent that ℵω+1satisfies the narrow system property and$\square _{\aleph _\omega, < \aleph (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Square and Delta reflection.Laura Fontanella & Yair Hayut - 2016 - Annals of Pure and Applied Logic 167 (8):663-683.
    Download  
     
    Export citation  
     
    Bookmark   3 citations