Switch to: Citations

Add references

You must login to add references.
  1. Aronszajn trees on [aleph]2 and [aleph]3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Possible values for 2K-and 2K.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-242.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The tree property up to אω+1.Itay Neeman - 2014 - Journal of Symbolic Logic 79 (2):429-459.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Aronszajn trees on ℵ2 and ℵ3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213-230.
    Assuming the existence of a supercompact cardinal and a weakly compact cardinal above it, we provide a generic extension where there are no Aronszajn trees of height ω 2 or ω 3 . On the other hand we show that some large cardinal assumptions are necessary for such a consistency result.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
    We prove various theorems about the preservation and destruction of the tree property at ω2. Working in a model of Mitchell [9] where the tree property holds at ω2, we prove that ω2 still has the tree property after ccc forcing of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} or adding an arbitrary number of Cohen reals. We show that there is a relatively mild forcing in this same model which destroys the tree property. Finally we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The consistency strength of successive cardinals with the tree property.Matthew Foreman, Menachem Magidor & Ralf-Dieter Schindler - 2001 - Journal of Symbolic Logic 66 (4):1837-1847.
    If ω n has the tree property for all $2 \leq n and $2^{ , then for all X ∈ H ℵ ω and $n exists.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fragility and indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The tree property at the ℵ 2 n 's and the failure of SCH at ℵ ω.Sy-David Friedman & Radek Honzik - 2015 - Annals of Pure and Applied Logic 166 (4):526-552.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strong tree properties for small cardinals.Laura Fontanella - 2013 - Journal of Symbolic Logic 78 (1):317-333.
    An inaccessible cardinal $\kappa$ is supercompact when $(\kappa, \lambda)$-ITP holds for all $\lambda\geq \kappa$. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where for every $n\geq 2$ and $\mu\geq \aleph_n$, we have $(\aleph_n, \mu)$-ITP.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Possible values for 2ℵn and 2ℵω.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Possible values for 2< sup> and 2.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Possible values for 2 (aleph n) and 2 (aleph omega).Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations