Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.T. Jech - 2005 - Bulletin of Symbolic Logic 11 (2):243-245.
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • Analytic ideals and their applications.Sławomir Solecki - 1999 - Annals of Pure and Applied Logic 99 (1-3):51-72.
    We study the structure of analytic ideals of subsets of the natural numbers. For example, we prove that for an analytic ideal I, either the ideal {X (Ω × Ω: En X ({0, 1,…,n} × Ω } is Rudin-Keisler below I, or I is very simply induced by a lower semicontinuous submeasure. Also, we show that the class of ideals induced in this manner by lsc submeasures coincides with Polishable ideals as well as analytic P-ideals. We study this class of (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • On Relatively Analytic and Borel Subsets.Arnold W. Miller - 2005 - Journal of Symbolic Logic 70 (1):346 - 352.
    Define z to be the smallest cardinality of a function f: X → Y with X. Y ⊆ 2ω such that there is no Borel function g ⊇ f. In this paper we prove that it is relatively consistent with ZFC to have b < z where b is, as usual, smallest cardinality of an unbounded family in ωω. This answers a question raised by Zapletal. We also show that it is relatively consistent with ZFC that there exists X ⊆ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Set theory.Thomas Jech - 1981 - Journal of Symbolic Logic.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (1 other version)A very discontinuous borel function.Juris Steprāns - 1993 - Journal of Symbolic Logic 58 (4):1268 - 1283.
    It is shown to be consistent that the reals are covered by ℵ1 meagre sets yet there is a Baire class 1 function which cannot be covered by fewer than ℵ2 continuous functions. A new cardinal invariant is introduced which corresponds to the least number of continuous functions required to cover a given function. This is characterized combinatorially. A forcing notion similar to, but not equivalent to, superperfect forcing is introduced.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Analytic ideals.Sławomir Solecki - 1996 - Bulletin of Symbolic Logic 2 (3):339-348.
    §1. Introduction. Ideals and filters of subsets of natural numbers have been studied by set theorists and topologists for a long time. There is a vast literature concerning various kinds of ultrafilters. There is also a substantial interest in nicely definable ideals—these by old results of Sierpiński are very far from being maximal— and the structure of such ideals will concern us in this announcement. In addition to being interesting in their own right, Borel and analytic ideals occur naturally in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Four and more.Ilijas Farah & Jindřich Zapletal - 2006 - Annals of Pure and Applied Logic 140 (1):3-39.
    We isolate several large classes of definable proper forcings and show how they include many partial orderings used in practice.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Decomposing baire functions.J. Cichoń, M. Morayne, J. Pawlikowski & S. Solecki - 1991 - Journal of Symbolic Logic 56 (4):1273 - 1283.
    We discuss in the paper the following problem: Given a function in a given Baire class, into "how many" (in terms of cardinal numbers) functions of lower classes can it be decomposed? The decomposition is understood here in the sense of the set-theoretical union.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Forcing indestructibility of MAD families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
    Let A[ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families which are P-indestructible yet Q-destructible for several pairs of forcing notions . We close with a detailed investigation of iterated Sacks indestructibility.
    Download  
     
    Export citation  
     
    Bookmark   14 citations