Switch to: Citations

Add references

You must login to add references.
  1. Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen.Justus Diller - 1974 - Archive for Mathematical Logic 16 (1-2):49-66.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On the unity of logic.Jean-Yves Girard - 1993 - Annals of Pure and Applied Logic 59 (3):201-217.
    We present a single sequent calculus common to classical, intuitionistic and linear logics. The main novelty is that classical, intuitionistic and linear logics appear as fragments, i.e. as particular classes of formulas and sequents. For instance, a proof of an intuitionistic formula A may use classical or linear lemmas without any restriction: but after cut-elimination the proof of A is wholly intuitionistic, what is superficially achieved by the subformula property and more deeply by a very careful treatment of structural rules. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Full intuitionistic linear logic.Martin Hyland & Valeria de Paiva - 1993 - Annals of Pure and Applied Logic 64 (3):273-291.
    In this paper we give a brief treatment of a theory of proofs for a system of Full Intuitionistic Linear Logic. This system is distinct from Classical Linear Logic, but unlike the standard Intuitionistic Linear Logic of Girard and Lafont includes the multiplicative disjunction par. This connective does have an entirely natural interpretation in a variety of categorical models of Intuitionistic Linear Logic. The main proof-theoretic problem arises from the observation of Schellinx that cut elimination fails outright for an intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication.Vincent Danos, Jean-Baptiste Joinet & Harold Schellinx - 1995 - In Jean-Yves Girard, Yves Lafont & Laurent Regnier (eds.), Advances in linear logic. New York, NY, USA: Cambridge University Press. pp. 222--211.
    Download  
     
    Export citation  
     
    Bookmark   3 citations