Switch to: Citations

Add references

You must login to add references.
  1. Existence and feasibility in arithmetic.Rohit Parikh - 1971 - Journal of Symbolic Logic 36 (3):494-508.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Provability of the pigeonhole principle and the existence of infinitely many primes.J. B. Paris, A. J. Wilkie & A. R. Woods - 1988 - Journal of Symbolic Logic 53 (4):1235-1244.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Dual weak pigeonhole principle, Boolean complexity, and derandomization.Emil Jeřábek - 2004 - Annals of Pure and Applied Logic 129 (1-3):1-37.
    We study the extension 123) of the theory S21 by instances of the dual weak pigeonhole principle for p-time functions, dWPHPx2x. We propose a natural framework for formalization of randomized algorithms in bounded arithmetic, and use it to provide a strengthening of Wilkie's witnessing theorem for S21+dWPHP. We construct a propositional proof system WF , which captures the Π1b-consequences of S21+dWPHP. We also show that WF p-simulates the Unstructured Extended Nullstellensatz proof system of Buss et al. 256). We prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Combinatorial principles in elementary number theory.Alessandro Berarducci & Benedetto Intrigila - 1991 - Annals of Pure and Applied Logic 55 (1):35-50.
    We prove that the theory IΔ0, extended by a weak version of the Δ0-Pigeonhole Principle, proves that every integer is the sum of four squares (Lagrange's theorem). Since the required weak version is derivable from the theory IΔ0 + ∀x (xlog(x) exists), our results give a positive answer to a question of Macintyre (1986). In the rest of the paper we consider the number-theoretical consequences of a new combinatorial principle, the ‘Δ0-Equipartition Principle’ (Δ0EQ). In particular we give a new proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The strength of sharply bounded induction.Emil Jeřábek - 2006 - Mathematical Logic Quarterly 52 (6):613-624.
    We prove that the sharply bounded arithmetic T02 in a language containing the function symbol ⌊x /2y⌋ is equivalent to PV1.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Grzegorczyk induction.Ch Cornaros - 1995 - Annals of Pure and Applied Logic 74 (1):1-21.
    We investigate the “mathematical” strength of the theory I*2. In particular we prove the quadratic reciprocity law and Bertrand's postulate, using fragments of I*2 which employ some well-known number-theoretic functions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The prime number theorem and fragments ofP A.C. Cornaros & C. Dimitracopoulos - 1994 - Archive for Mathematical Logic 33 (4):265-281.
    We show that versions of the prime number theorem as well as equivalent statements hold in an arbitrary model ofIΔ 0+exp.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quadratic forms in models of I Δ 0 + Ω 1. I.Paola D’Aquino & Angus Macintyre - 2007 - Annals of Pure and Applied Logic 148 (1):31-48.
    Gauss used quadratic forms in his second proof of quadratic reciprocity. In this paper we begin to develop a theory of binary quadratic forms over weak fragments of Peano Arithmetic, with a view to reproducing Gauss’ proof in this setting.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Δ0-complexity of the relation y = Πi ⩽ nF.Alessandro Berarducci & Paola D'Aquino - 1995 - Annals of Pure and Applied Logic 75 (1):49-56.
    We prove that if G is a Δ 0 -definable function on the natural numbers and F = Π i = 0 n G , then F is also Δ 0 -definable. Moreover, the inductive properties of F can be proved inside the theory IΔ 0.
    Download  
     
    Export citation  
     
    Bookmark   3 citations