Switch to: Citations

Add references

You must login to add references.
  1. Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Acceptable notation.Stewart Shapiro - 1982 - Notre Dame Journal of Formal Logic 23 (1):14-20.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Trial and error predicates and the solution to a problem of Mostowski.Hilary Putnam - 1965 - Journal of Symbolic Logic 30 (1):49-57.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • (1 other version)Limiting recursion.E. Mark Gold - 1965 - Journal of Symbolic Logic 30 (1):28-48.
    A class of problems is called decidable if there is an algorithm which will give the answer to any problem of the class after a finite length of time. The purpose of this paper is to discuss the classes of problems that can be solved by infinitely long decision procedures in the following sense: An algorithm is given which, for any problem of the class, generates an infinitely long sequence of guesses. The problem will be said to be solved in (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   592 citations  
  • Deviant encodings and Turing’s analysis of computability.B. Jack Copeland & Diane Proudfoot - 2010 - Studies in History and Philosophy of Science Part A 41 (3):247-252.
    Turing’s analysis of computability has recently been challenged; it is claimed that it is circular to analyse the intuitive concept of numerical computability in terms of the Turing machine. This claim threatens the view, canonical in mathematics and cognitive science, that the concept of a systematic procedure or algorithm is to be explicated by reference to the capacities of Turing machines. We defend Turing’s analysis against the challenge of ‘deviant encodings’.Keywords: Systematic procedure; Turing machine; Church–Turing thesis; Deviant encoding; Acceptable encoding; (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Recantation or any old w-sequence would do after all.Paul Benacerraf - 1996 - Philosophia Mathematica 4 (2):184-189.
    What Numbers Could Not Be’) that an adequate account of the numbers and our arithmetic practice must satisfy not only the conditions usually recognized to be necessary: (a) identify some w-sequence as the numbers, and (b) correctly characterize the cardinality relation that relates a set to a member of that sequence as its cardinal number—it must also satisfy a third condition: the ‘<’ of the sequence must be recursive. This paper argues that adding this further condition was a mistake—any w-sequence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Generic copies of countable structures.Chris Ash, Julia Knight, Mark Manasse & Theodore Slaman - 1989 - Annals of Pure and Applied Logic 42 (3):195-205.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Degrees coded in jumps of orderings.Julia F. Knight - 1986 - Journal of Symbolic Logic 51 (4):1034-1042.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Scott sentences for equivalence structures.Sara B. Quinn - 2020 - Archive for Mathematical Logic 59 (3-4):453-460.
    For a computable structure \, if there is a computable infinitary Scott sentence, then the complexity of this sentence gives an upper bound for the complexity of the index set \\). If we can also show that \\) is m-complete at that level, then there is a correspondence between the complexity of the index set and the complexity of a Scott sentence for the structure. There are results that suggest that these complexities will always match. However, it was shown in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of bi-embeddable categoricity of equivalence structures.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Archive for Mathematical Logic 58 (5-6):543-563.
    We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, \ bi-embeddable categoricity, and degrees of bi-embeddable categoricity. These notions mirror the classical notions used to study the complexity of isomorphisms between structures. We show that the notions of \ bi-embeddable categoricity and relative \ bi-embeddable categoricity coincide for equivalence structures for \. We also prove that computable equivalence structures have degree of bi-embeddable categoricity \, or \. We furthermore obtain results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Representing Numbers.Michał Wrocławski - 2018 - Filozofia Nauki 26 (4):57-73.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Copeland and Proudfoot on computability.Michael Rescorla - 2012 - Studies in History and Philosophy of Science Part A 43 (1):199-202.
    Many philosophers contend that Turing’s work provides a conceptual analysis of numerical computability. In (Rescorla, 2007), I dissented. I argued that the problem of deviant notations stymies existing attempts at conceptual analysis. Copeland and Proudfoot respond to my critique. I argue that their putative solution does not succeed. We are still awaiting a genuine conceptual analysis.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A taxonomy of deviant encodings.Paula Quinon - 2018 - In F. Manea, R. Miller & D. Nowotka (eds.), Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science, vol 10936. Springer. pp. 338-348.
    The main objective of this paper is to design a common background for various philosophical discussions about adequate conceptual analysis of “computation”.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Δ 2 0 -categoricity of equivalence relations.Rod Downey, Alexander G. Melnikov & Keng Meng Ng - 2015 - Annals of Pure and Applied Logic 166 (9):851-880.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Friedberg enumeration of equivalence structures.Rodney G. Downey, Alexander G. Melnikov & Keng Meng Ng - 2017 - Journal of Mathematical Logic 17 (2):1750008.
    We solve a problem posed by Goncharov and Knight 639–681, 757]). More specifically, we produce an effective Friedberg enumeration of computable equivalence structures, up to isomorphism. We also prove that there exists an effective Friedberg enumeration of all isomorphism types of infinite computable equivalence structures.
    Download  
     
    Export citation  
     
    Bookmark   2 citations