Switch to: References

Add citations

You must login to add citations.
  1. New Degree Spectra of Abelian Groups.Alexander G. Melnikov - 2017 - Notre Dame Journal of Formal Logic 58 (4):507-525.
    We show that for every computable ordinal of the form β=δ+2n+1>1, where δ is zero or a limit ordinal and n∈ω, there exists a torsion-free abelian group having an X-computable copy if and only if X is nonlowβ.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of orderings not isomorphic to recursive linear orderings.Carl G. Jockusch & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 52 (1-2):39-64.
    It is shown that for every nonzero r.e. degree c there is a linear ordering of degree c which is not isomorphic to any recursive linear ordering. It follows that there is a linear ordering of low degree which is not isomorphic to any recursive linear ordering. It is shown further that there is a linear ordering L such that L is not isomorphic to any recursive linear ordering, and L together with its ‘infinitely far apart’ relation is of low (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Degree spectra and computable dimensions in algebraic structures.Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore & Arkadii M. Slinko - 2002 - Annals of Pure and Applied Logic 115 (1-3):71-113.
    Whenever a structure with a particularly interesting computability-theoretic property is found, it is natural to ask whether similar examples can be found within well-known classes of algebraic structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this question is to adapt the original proof to the new setting. However, this can be an unnecessary duplication of effort, and lacks generality. Another method is to code the original structure into a structure in the given (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Computability of fraïssé limits.Barbara F. Csima, Valentina S. Harizanov, Russell Miller & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (1):66 - 93.
    Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Measuring complexities of classes of structures.Barbara F. Csima & Carolyn Knoll - 2015 - Annals of Pure and Applied Logic 166 (12):1365-1381.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weak Truth Table Degrees of Structures.David R. Belanger - 2015 - Notre Dame Journal of Formal Logic 56 (2):263-285.
    We study the weak truth table degree spectra of first-order relational structures. We prove a dichotomy among the possible wtt degree spectra along the lines of Knight’s upward-closure theorem for Turing degree spectra. We prove new results contrasting the wtt degree spectra of finite- and infinite-signature structures. We show that, as a method of defining classes of reals, the wtt degree spectrum is, except for some trivial cases, strictly more expressive than the Turing degree spectrum.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic copies of countable structures.Chris Ash, Julia Knight, Mark Manasse & Theodore Slaman - 1989 - Annals of Pure and Applied Logic 42 (3):195-205.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • The degree spectra of homogeneous models.Karen Lange - 2008 - Journal of Symbolic Logic 73 (3):1009-1028.
    Much previous study has been done on the degree spectra of prime models of a complete atomic decidable theory. Here we study the analogous questions for homogeneous models. We say a countable model A has a d-basis if the types realized in A are all computable and the Turing degree d can list $\Delta _{0}^{0}$ -indices for all types realized in A. We say A has a d-decidable copy if there exists a model B ≅ A such that the elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bounding Homogeneous Models.Barbara F. Csima, Valentina S. Harizanov, Denis R. Hirschfeldt & Robert I. Soare - 2007 - Journal of Symbolic Logic 72 (1):305 - 323.
    A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a d-decidable homogeneous model A, i.e., the elementary diagram De (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Turing degree spectra of differentially closed fields.David Marker & Russell Miller - 2017 - Journal of Symbolic Logic 82 (1):1-25.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computable isomorphisms, degree spectra of relations, and Scott families.Bakhadyr Khoussainov & Richard A. Shore - 1998 - Annals of Pure and Applied Logic 93 (1-3):153-193.
    The spectrum of a relation on a computable structure is the set of Turing degrees of the image of R under all isomorphisms between and any other computable structure . The relation is intrinsically computably enumerable if its image under all such isomorphisms is c.e. We prove that any computable partially ordered set is isomorphic to the spectrum of an intrinsically c.e. relation on a computable structure. Moreover, the isomorphism can be constructed in such a way that the image of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Degree spectra and immunity properties.Barbara F. Csima & Iskander S. Kalimullin - 2010 - Mathematical Logic Quarterly 56 (1):67-77.
    We analyze the degree spectra of structures in which different types of immunity conditions are encoded. In particular, we give an example of a structure whose degree spectrum coincides with the hyperimmune degrees. As a corollary, this shows the existence of an almost computable structure of which the complement of the degree spectrum is uncountable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computability of Homogeneous Models.Karen Lange & Robert I. Soare - 2007 - Notre Dame Journal of Formal Logic 48 (1):143-170.
    In the last five years there have been a number of results about the computable content of the prime, saturated, or homogeneous models of a complete decidable theory T in the spirit of Vaught's "Denumerable models of complete theories" combined with computability methods for degrees d ≤ 0′. First we recast older results by Goncharov, Peretyat'kin, and Millar in a more modern framework which we then apply. Then we survey recent results by Lange, "The degree spectra of homogeneous models," which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Lopez-Escobar Theorem for Continuous Domains.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger, Alexandra Soskova & Stefan Vatev - forthcoming - Journal of Symbolic Logic:1-18.
    We prove an effective version of the Lopez-Escobar theorem for continuous domains. Let $Mod(\tau )$ be the set of countable structures with universe $\omega $ in vocabulary $\tau $ topologized by the Scott topology. We show that an invariant set $X\subseteq Mod(\tau )$ is $\Pi ^0_\alpha $ in the Borel hierarchy of this topology if and only if it is definable by a $\Pi ^p_\alpha $ -formula, a positive $\Pi ^0_\alpha $ formula in the infinitary logic $L_{\omega _1\omega }$. As (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Uncountable degree spectra.Valentina S. Harizanov - 1991 - Annals of Pure and Applied Logic 54 (3):255-263.
    We consider a recursive model and an additional recursive relation R on its domain, such that there are uncountably many different images of R under isomorphisms from to some recursive model isomorphic to . We study properties of the set of Turing degrees of all these isomorphic images of R on the domain of.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A characterization of the 0 -basis homogeneous bounding degrees.Karen Lange - 2010 - Journal of Symbolic Logic 75 (3):971-995.
    We say a countable model ������ has a 0-basis if the types realized in ������ are uniformly computable. We say ������ has a (d-)decidable copy if there exists a model ������ ≅ ������ such that the elementary diagram of ������ is (d-)computable. Goncharov, Millar, and Peretyat'kin independently showed there exists a homogeneous model ������ with a 0-basis but no decidable copy. We extend this result here. Let d ≤ 0' be any low₂ degree. We show that there exists a homogeneous (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Order-Computable Sets.Denis Hirschfeldt, Russell Miller & Sergei Podzorov - 2007 - Notre Dame Journal of Formal Logic 48 (3):317-347.
    We give a straightforward computable-model-theoretic definition of a property of \Delta^0_2 sets called order-computability. We then prove various results about these sets which suggest that, simple though the definition is, the property defies any easy characterization in pure computability theory. The most striking example is the construction of two computably isomorphic c.e. sets, one of which is order-computable and the other not.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalization of Shapiro’s theorem to higher arities and noninjective notations.Dariusz Kalociński & Michał Wrocławski - 2022 - Archive for Mathematical Logic 62 (1):257-288.
    In the framework of Stewart Shapiro, computations are performed directly on strings of symbols (numerals) whose abstract numerical interpretation is determined by a notation. Shapiro showed that a total unary function (unary relation) on natural numbers is computable in every injective notation if and only if it is almost constant or almost identity function (finite or co-finite set). We obtain a syntactic generalization of this theorem, in terms of quantifier-free definability, for functions and relations relatively intrinsically computable on certain types (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable Heyting Algebras with Distinguished Atoms and Coatoms.Nikolay Bazhenov - 2023 - Journal of Logic, Language and Information 32 (1):3-18.
    The paper studies Heyting algebras within the framework of computable structure theory. We prove that the class _K_ containing all Heyting algebras with distinguished atoms and coatoms is complete in the sense of the work of Hirschfeldt et al. (Ann Pure Appl Logic 115(1-3):71-113, 2002). This shows that the class _K_ is rich from the computability-theoretic point of view: for example, every possible degree spectrum can be realized by a countable structure from _K_. In addition, there is no simple syntactic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the effective universality of mereological theories.Nikolay Bazhenov & Hsing-Chien Tsai - 2022 - Mathematical Logic Quarterly 68 (1):48-66.
    Mereological theories are based on the binary relation “being a part of”. The systematic investigations of mereology were initiated by Leśniewski. More recent authors (including Simons, Casati and Varzi, Hovda) formulated a series of first‐order mereological axioms. These axioms give rise to a plenitude of theories, which are of great philosophical interest. The paper considers first‐order mereological theories from the point of view of computable (or effective) algebra. Following the approach of Hirschfeldt, Khoussainov, Shore, and Slinko, we isolate two important (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Degree spectra of real closed fields.Russell Miller & Victor Ocasio González - 2019 - Archive for Mathematical Logic 58 (3-4):387-411.
    Several researchers have recently established that for every Turing degree \, the real closed field of all \-computable real numbers has spectrum \. We investigate the spectra of real closed fields further, focusing first on subfields of the field \ of computable real numbers, then on archimedean real closed fields more generally, and finally on non-archimedean real closed fields. For each noncomputable, computably enumerable set C, we produce a real closed C-computable subfield of \ with no computable copy. Then we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Coding and Definability in Computable Structures.Antonio Montalbán - 2018 - Notre Dame Journal of Formal Logic 59 (3):285-306.
    These are the lecture notes from a 10-hour course that the author gave at the University of Notre Dame in September 2010. The objective of the course was to introduce some basic concepts in computable structure theory and develop the background needed to understand the author’s research on back-and-forth relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Bi‐embeddability spectra and bases of spectra.Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Mathematical Logic Quarterly 65 (2):228-236.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categoricity Spectra for Polymodal Algebras.Nikolay Bazhenov - 2016 - Studia Logica 104 (6):1083-1097.
    We investigate effective categoricity for polymodal algebras. We prove that the class of polymodal algebras is complete with respect to degree spectra of nontrivial structures, effective dimensions, expansion by constants, and degree spectra of relations. In particular, this implies that every categoricity spectrum is the categoricity spectrum of a polymodal algebra.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The jump operation for structure degrees.V. Baleva - 2005 - Archive for Mathematical Logic 45 (3):249-265.
    One of the main problems in effective model theory is to find an appropriate information complexity measure of the algebraic structures in the sense of computability. Unlike the commonly used degrees of structures, the structure degree measure is total. We introduce and study the jump operation for structure degrees. We prove that it has all natural jump properties (including jump inversion theorem, theorem of Ash), which show that our definition is relevant. We study the relation between the structure degree jump (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Jump degrees of torsion-free abelian groups.Brooke M. Andersen, Asher M. Kach, Alexander G. Melnikov & Reed Solomon - 2012 - Journal of Symbolic Logic 77 (4):1067-1100.
    We show, for each computable ordinal α and degree $\alpha > {0^{\left( \alpha \right)}}$, the existence of a torsion-free abelian group with proper α th jump degree α.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Effective algebraicity.Rebecca M. Steiner - 2013 - Archive for Mathematical Logic 52 (1-2):91-112.
    Results of R. Miller in 2009 proved several theorems about algebraic fields and computable categoricity. Also in 2009, A. Frolov, I. Kalimullin, and R. Miller proved some results about the degree spectrum of an algebraic field when viewed as a subfield of its algebraic closure. Here, we show that the same computable categoricity results also hold for finite-branching trees under the predecessor function and for connected, finite-valence, pointed graphs, and we show that the degree spectrum results do not hold for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations