Switch to: Citations

Add references

You must login to add references.
  1. The scope and limits of a mechanistic view of computational explanation.Maria Serban - 2015 - Synthese 192 (10):3371-3396.
    An increasing number of philosophers have promoted the idea that mechanism provides a fruitful framework for thinking about the explanatory contributions of computational approaches in cognitive neuroscience. For instance, Piccinini and Bahar :453–488, 2013) have recently argued that neural computation constitutes a sui generis category of physical computation which can play a genuine explanatory role in the context of investigating neural and cognitive processes. The core of their proposal is to conceive of computational explanations in cognitive neuroscience as a subspecies (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Distinguishing topological and causal explanation.Lauren N. Ross - 2020 - Synthese 198 (10):9803-9820.
    Recent philosophical work has explored the distinction between causal and non-causal forms of explanation. In this literature, topological explanation is viewed as a clear example of the non-causal variety–it is claimed that topology lacks temporal information, which is necessary for causal structure. This paper explores the distinction between topological and causal forms of explanation and argues that this distinction is not as clear cut as the literature suggests. One reason for this is that some explanations involve both topological and causal (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dynamical Models and Explanation in Neuroscience.Lauren N. Ross - 2015 - Philosophy of Science 82 (1):32-54.
    Kaplan and Craver claim that all explanations in neuroscience appeal to mechanisms. They extend this view to the use of mathematical models in neuroscience and propose a constraint such models must meet in order to be explanatory. I analyze a mathematical model used to provide explanations in dynamical systems neuroscience and indicate how this explanation cannot be accommodated by the mechanist framework. I argue that this explanation is well characterized by Batterman’s account of minimal model explanations and that it demonstrates (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Network representation and complex systems.Charles Rathkopf - 2018 - Synthese (1).
    In this article, network science is discussed from a methodological perspective, and two central theses are defended. The first is that network science exploits the very properties that make a system complex. Rather than using idealization techniques to strip those properties away, as is standard practice in other areas of science, network science brings them to the fore, and uses them to furnish new forms of explanation. The second thesis is that network representations are particularly helpful in explaining the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Safety-Based Epistemology.Duncan Pritchard - 2009 - Journal of Philosophical Research 34:33-45.
    This paper explores the prospects for safety-based theories of knowledge in the light of some recent objections.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Mechanisms and Model-Based Functional Magnetic Resonance Imaging.Mark Povich - 2015 - Philosophy of Science 82 (5):1035-1046.
    Mechanistic explanations satisfy widely held norms of explanation: the ability to manipulate and answer counterfactual questions about the explanandum phenomenon. A currently debated issue is whether any nonmechanistic explanations can satisfy these explanatory norms. Weiskopf argues that the models of object recognition and categorization, JIM, SUSTAIN, and ALCOVE, are not mechanistic yet satisfy these norms of explanation. In this article I argue that these models are mechanism sketches. My argument applies recent research using model-based functional magnetic resonance imaging, a novel (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Integrating psychology and neuroscience: functional analyses as mechanism sketches.Gualtiero Piccinini & Carl Craver - 2011 - Synthese 183 (3):283-311.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...)
    Download  
     
    Export citation  
     
    Bookmark   200 citations  
  • Computational explanation in neuroscience.Gualtiero Piccinini - 2006 - Synthese 153 (3):343-353.
    According to some philosophers, computational explanation is proprietary
    to psychology—it does not belong in neuroscience. But neuroscientists routinely offer computational explanations of cognitive phenomena. In fact, computational explanation was initially imported from computability theory into the science of mind by neuroscientists, who justified this move on neurophysiological grounds. Establishing the legitimacy and importance of computational explanation in neuroscience is one thing; shedding light on it is another. I raise some philosophical questions pertaining to computational explanation and outline some promising answers that (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Theoretical Understanding in Science.Mark P. Newman - 2017 - British Journal for the Philosophy of Science 68 (2).
    In this article I develop a model of theoretical understanding in science. This is a philosophical theory that specifies the conditions that are both necessary and sufficient for a scientist to satisfy the construction ‘S understands theory T ’. I first consider how this construction is preferable to others, then build a model of the requisite conditions on the basis of examples from elementary physics. I then show how this model of theoretical understanding can be made philosophically robust and provide (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Refining the Inferential Model of Scientific Understanding.Mark Newman - 2013 - International Studies in the Philosophy of Science 27 (2):173-197.
    In this article, I use a mental models computational account of representation to illustrate some details of my previously presented inferential model of scientific understanding. The hope is to shed some light on possible mechanisms behind the notion of scientific understanding. I argue that if mental models are a plausible approach to modelling cognition, then understanding can best be seen as the coupling of specific rules. I present our beliefs as ?ordinary? conditional rules, and the coupling process as one where (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • An Inferential Model of Scientific Understanding.Mark Newman - 2012 - International Studies in the Philosophy of Science 26 (1):1 - 26.
    In this article I argue that two current accounts of scientific understanding are incorrect and I propose an alternative theory. My new account draws on recent research in cognitive psychology which reveals the importance of making causal and logical inferences on the basis of incoming information. To understand a phenomenon we need to make particular kinds of inferences concerning the explanations we are given. Specifically, we come to understand a phenomenon scientifically by developing mental models that incorporate the correct causal (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Explanations in cognitive science: unification versus pluralism.Marcin Miłkowski & Mateusz Hohol - 2020 - Synthese 199 (Suppl 1):1-17.
    The debate between the defenders of explanatory unification and explanatory pluralism has been ongoing from the beginning of cognitive science and is one of the central themes of its philosophy. Does cognitive science need a grand unifying theory? Should explanatory pluralism be embraced instead? Or maybe local integrative efforts are needed? What are the advantages of explanatory unification as compared to the benefits of explanatory pluralism? These questions, among others, are addressed in this Synthese’s special issue. In the introductory paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intertheoretic relations and the future of psychology.Robert N. McCauley - 1986 - Philosophy of Science 53 (June):179-99.
    In the course of defending both a unified model of intertheoretic relations in science and scientific realism, Paul Churchland has attempted to reinvigorate eliminative materialism. Churchland's eliminativism operates on three claims: (1) that some intertheoretic contexts involve incommensurable theories, (2) that such contexts invariably require the elimination of one theory or the other, and (3) that the relation of psychology and neuroscience is just such a context. I argue that a more detailed account of intertheoretic relations, which distinguishes between the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1332 citations  
  • SUSTAIN: A Network Model of Category Learning.Bradley C. Love, Douglas L. Medin & Todd M. Gureckis - 2004 - Psychological Review 111 (2):309-332.
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • What was Hodgkin and Huxley’s Achievement?Arnon Levy - 2013 - British Journal for the Philosophy of Science 65 (3):469-492.
    The Hodgkin–Huxley (HH) model of the action potential is a theoretical pillar of modern neurobiology. In a number of recent publications, Carl Craver ([2006], [2007], [2008]) has argued that the model is explanatorily deficient because it does not reveal enough about underlying molecular mechanisms. I offer an alternative picture of the HH model, according to which it deliberately abstracts from molecular specifics. By doing so, the model explains whole-cell behaviour as the product of a mass of underlying low-level events. The (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • External representations and scientific understanding.Jaakko Kuorikoski & Petri Ylikoski - 2015 - Synthese 192 (12):3817-3837.
    This paper provides an inferentialist account of model-based understanding by combining a counterfactual account of explanation and an inferentialist account of representation with a view of modeling as extended cognition. This account makes it understandable how the manipulation of surrogate systems like models can provide genuinely new empirical understanding about the world. Similarly, the account provides an answer to the question how models, that always incorporate assumptions that are literally untrue of the model target, can still provide factive explanations. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The topological realization.Daniel Kostić - 2018 - Synthese (1).
    In this paper, I argue that the newly developed network approach in neuroscience and biology provides a basis for formulating a unique type of realization, which I call topological realization. Some of its features and its relation to one of the dominant paradigms of realization and explanation in sciences, i.e. the mechanistic one, are already being discussed in the literature. But the detailed features of topological realization, its explanatory power and its relation to another prominent view of realization, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Directionality of Topological Explanations.Daniel Kostić & Kareem Khalifa - 2021 - Synthese (5-6):14143-14165.
    Proponents of ontic conceptions of explanation require all explanations to be backed by causal, constitutive, or similar relations. Among their justifications is that only ontic conceptions can do justice to the ‘directionality’ of explanation, i.e., the requirement that if X explains Y , then not-Y does not explain not-X . Using topological explanations as an illustration, we argue that non-ontic conceptions of explanation have ample resources for securing the directionality of explanations. The different ways in which neuroscientists rely on multiplexes (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Decoupling Topological Explanations from Mechanisms.Daniel Kostic & Kareem Khalifa - 2023 - Philosophy of Science 90 (2):245 - 268.
    We provide three innovations to recent debates about whether topological or “network” explanations are a species of mechanistic explanation. First, we more precisely characterize the requirement that all topological explanations are mechanistic explanations and show scientific practice to belie such a requirement. Second, we provide an account that unifies mechanistic and non-mechanistic topological explanations, thereby enriching both the mechanist and autonomist programs by highlighting when and where topological explanations are mechanistic. Third, we defend this view against some powerful mechanist objections. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Introduction: Machine learning as philosophy of science.Kevin B. Korb - 2004 - Minds and Machines 14 (4):433-440.
    I consider three aspects in which machine learning and philosophy of science can illuminate each other: methodology, inductive simplicity and theoretical terms. I examine the relations between the two subjects and conclude by claiming these relations to be very close.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Role of Explanation in Understanding.Kareem Khalifa - 2013 - British Journal for the Philosophy of Science 64 (1):161-187.
    Peter Lipton has argued that understanding can exist in the absence of explanation. We argue that this does not denigrate explanation's importance to understanding. Specifically, we show that all of Lipton's examples are consistent with the idea that explanation is the ideal of understanding, i.e. other modes of understanding ought to be assessed by how well they replicate the understanding provided by a good and correct explanation. We defend this idea by showing that for all of Lipton's examples of non-explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Is Verstehen Scientific Understanding?Kareem Khalifa - 2019 - Philosophy of the Social Sciences 49 (4):282-306.
    Many have argued that the human sciences feature a unique form of understanding that is absent from the natural sciences. However, in the last decade or so, epistemologists and philosop...
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Is understanding explanatory or objectual?Kareem Khalifa - 2013 - Synthese 190 (6):1153-1171.
    Jonathan Kvanvig has argued that “objectual” understanding, i.e. the understanding we have of a large body of information, cannot be reduced to explanatory concepts. In this paper, I show that Kvanvig fails to establish this point, and then propose a framework for reducing objectual understanding to explanatory understanding.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Inaugurating Understanding or Repackaging Explanation?Kareem Khalifa - 2012 - Philosophy of Science 79 (1):15-37.
    Recently, several authors have argued that scientific understanding should be a new topic of philosophical research. In this article, I argue that the three most developed accounts of understanding--Grimm's, de Regt's, and de Regt and Dieks's--can be replaced by earlier accounts of scientific explanation without loss. Indeed, in some cases, such replacements have clear benefits.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Understanding phenomena.Christoph Kelp - 2015 - Synthese 192 (12):3799-3816.
    The literature on the nature of understanding can be divided into two broad camps. Explanationists believe that it is knowledge of explanations that is key to understanding. In contrast, their manipulationist rivals maintain that understanding essentially involves an ability to manipulate certain representations. The aim of this paper is to provide a novel knowledge based account of understanding. More specifically, it proposes an account of maximal understanding of a given phenomenon in terms of fully comprehensive and maximally well-connected knowledge of (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Dynamical Models: An Alternative or Complement to Mechanistic Explanations?David M. Kaplan & William Bechtel - 2011 - Topics in Cognitive Science 3 (2):438-444.
    Abstract While agreeing that dynamical models play a major role in cognitive science, we reject Stepp, Chemero, and Turvey's contention that they constitute an alternative to mechanistic explanations. We review several problems dynamical models face as putative explanations when they are not grounded in mechanisms. Further, we argue that the opposition of dynamical models and mechanisms is a false one and that those dynamical models that characterize the operations of mechanisms overcome these problems. By briefly considering examples involving the generation (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The Role of Explanation in Discovery and Generalization: Evidence From Category Learning.Joseph J. Williams & Tania Lombrozo - 2010 - Cognitive Science 34 (5):776-806.
    Research in education and cognitive development suggests that explaining plays a key role in learning and generalization: When learners provide explanations—even to themselves—they learn more effectively and generalize more readily to novel situations. This paper proposes and tests a subsumptive constraints account of this effect. Motivated by philosophical theories of explanation, this account predicts that explaining guides learners to interpret what they are learning in terms of unifying patterns or regularities, which promotes the discovery of broad generalizations. Three experiments provide (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • What is a cognitive ontology, anyway?Annelli Janssen, Colin Klein & Marc Slors - 2017 - Philosophical Explorations 20 (2):123-128.
    This special issue brings together philosophical perspectives on the debate over cognitive ontology. We contextualize the papers in this issue by considering several different senses of the term “cognitive ontology” and linking those debates to traditional debates in philosophy of mind.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Function and organization: comparing the mechanisms of protein synthesis and natural selection.Phyllis McKay Illari & Jon Williamson - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (3):279-291.
    In this paper, we compare the mechanisms of protein synthesis and natural selection. We identify three core elements of mechanistic explanation: functional individuation, hierarchical nestedness or decomposition, and organization. These are now well understood elements of mechanistic explanation in fields such as protein synthesis, and widely accepted in the mechanisms literature. But Skipper and Millstein have argued that natural selection is neither decomposable nor organized. This would mean that much of the current mechanisms literature does not apply to the mechanism (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Outlines of a theory of structural explanations.Philippe Huneman - 2018 - Philosophical Studies 175 (3):665-702.
    This paper argues that in some explanations mathematics are playing an explanatory rather than a representational role, and that this feature unifies many types of non-causal or non-mechanistic explanations that some philosophers of science have been recently exploring under various names. After showing how mathematics can play either a representational or an explanatory role by considering two alternative explanations of a same biological pattern—“Bergmann’s rule”—I offer an example of an explanation where the bulk of the explanatory job is done by (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Greater Unification Equals Greater Understanding?Paul Humphreys - 1993 - Analysis 53 (3):183 - 188.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Dynamic binding in a neural network for shape recognition.John E. Hummel & Irving Biederman - 1992 - Psychological Review 99 (3):480-517.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • The seductive allure is a reductive allure: People prefer scientific explanations that contain logically irrelevant reductive information.Emily J. Hopkins, Deena Skolnick Weisberg & Jordan C. V. Taylor - 2016 - Cognition 155 (C):67-76.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Pragmatic reasoning with a point of view.Keith J. Holyoak & Patricia W. Cheng - 1995 - Thinking and Reasoning 1 (4):289 – 313.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • One mechanism, many models: a distributed theory of mechanistic explanation.Eric Hochstein - 2016 - Synthese 193 (5):1387-1407.
    There have been recent disagreements in the philosophy of neuroscience regarding which sorts of scientific models provide mechanistic explanations, and which do not. These disagreements often hinge on two commonly adopted, but conflicting, ways of understanding mechanistic explanations: what I call the “representation-as” account, and the “representation-of” account. In this paper, I argue that neither account does justice to neuroscientific practice. In their place, I offer a new alternative that can defuse some of these disagreements. I argue that individual models (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Explanatory generalizations, part II: Plumbing explanatory depth.Christopher Hitchcock & James Woodward - 2003 - Noûs 37 (2):181–199.
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Understanding Why.Alison Hills - 2015 - Noûs 49 (2):661-688.
    I argue that understanding why p involves a kind of intellectual know how and differsfrom both knowledge that p and knowledge why p (as they are standardly understood).I argue that understanding, in this sense, is valuable.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Recent Work in the Epistemology of Understanding.Michael Hannon - 2021 - American Philosophical Quarterly 58 (3):269-290.
    The philosophical interest in the nature, value, and varieties of human understanding has swelled in recent years. This article will provide an overview of new research in the epistemology of understanding, with a particular focus on the following questions: What is understanding and why should we care about it? Is understanding reducible to knowledge? Does it require truth, belief, or justification? Can there be lucky understanding? Does it require ‘grasping’ or some kind of ‘know-how’? This cluster of questions has largely (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Explanation as orgasm.Alison Gopnik - 1998 - Minds and Machines 8 (1):101-118.
    I argue that explanation should be thought of as the phenomenological mark of the operation of a particular kind of cognitive system, the theory-formation system. The theory-formation system operates most clearly in children and scientists but is also part of our everyday cognition. The system is devoted to uncovering the underlying causal structure of the world. Since this process often involves active intervention in the world, in the case of systematic experiment in scientists, and play in children, the cognitive system (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Dissociation of Mechanisms Underlying Syllogistic Reasoning.Vinod Goel, Christian Buchel, Chris Frith & Raymond J. Dolan - 2000 - NeuroImage 12 (5):504-514.
    A key question for cognitive theories of reasoning is whether logical reasoning is inherently a sentential linguistic process or a process requiring spatial manipulation and search. We addressed this question in an event-related fMRI study of syllogistic reasoning, using sentences with and without semantic content. Our findings indicate involvement of two dissociable networks in deductive reasoning. During content-based reasoning a left hemisphere temporal system was recruited. By contrast, a formally identical reasoning task, which lacked semantic content, activated a parietal system. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Because Without Cause: Non-Causal Explanations in Science and Mathematics.Marc Lange - 2016 - Oxford, England: Oxford University Press USA.
    Not all scientific explanations work by describing causal connections between events or the world's overall causal structure. In addition, mathematicians regard some proofs as explaining why the theorems being proved do in fact hold. This book proposes new philosophical accounts of many kinds of non-causal explanations in science and mathematics.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Explanation and scientific understanding.Michael Friedman - 1974 - Journal of Philosophy 71 (1):5-19.
    Download  
     
    Export citation  
     
    Bookmark   581 citations  
  • Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2021 - British Journal for the Philosophy of Science 72 (2):431-438.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Dynamical systems theory in cognitive science and neuroscience.Luis H. Favela - 2020 - Philosophy Compass 15 (8):e12695.
    Dynamical systems theory (DST) is a branch of mathematics that assesses abstract or physical systems that change over time. It has a quantitative part (mathematical equations) and a related qualitative part (plotting equations in a state space). Nonlinear dynamical systems theory applies the same tools in research involving phenomena such as chaos and hysteresis. These approaches have provided different ways of investigating and understanding cognitive systems in cognitive science and neuroscience. The ‘dynamical hypothesis’ claims that cognition is and can be (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Individuation without Representation.Joe Dewhurst - 2018 - British Journal for the Philosophy of Science 69 (1):103-116.
    ABSTRACT Shagrir and Sprevak explore the apparent necessity of representation for the individuation of digits in computational systems.1 1 I will first offer a response to Sprevak’s argument that does not mention Shagrir’s original formulation, which was more complex. I then extend my initial response to cover Shagrir’s argument, thus demonstrating that it is possible to individuate digits in non-representational computing mechanisms. I also consider the implications that the non-representational individuation of digits would have for the broader theory of computing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Physical Computation: A Mechanistic Account.Gualtiero Piccinini - 2015 - Oxford, GB: Oxford University Press UK.
    Gualtiero Piccinini articulates and defends a mechanistic account of concrete, or physical, computation. A physical system is a computing system just in case it is a mechanism one of whose functions is to manipulate vehicles based solely on differences between different portions of the vehicles according to a rule defined over the vehicles. Physical Computation discusses previous accounts of computation and argues that the mechanistic account is better. Many kinds of computation are explicated, such as digital vs. analog, serial vs. (...)
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • The seductive allure of neuroscience explanations.Frank Keil - manuscript
    & Explanations of psychological phenomena seem to genervs. with neuroscience) design. Crucially, the neuroscience inate more public interest when they contain neuroscientific..
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Radical Embodied Cognitive Science.Anthony Chemero - 2009 - Bradford.
    While philosophers of mind have been arguing over the status of mental representations in cognitive science, cognitive scientists have been quietly engaged in studying perception, action, and cognition without explaining them in terms of mental representation. In this book, Anthony Chemero describes this nonrepresentational approach, puts it in historical and conceptual context, and applies it to traditional problems in the philosophy of mind. Radical embodied cognitive science is a direct descendant of the American naturalist psychology of William James and John (...)
    Download  
     
    Export citation  
     
    Bookmark   622 citations