Switch to: Citations

Add references

You must login to add references.
  1. Complex biological mechanisms: Cyclic, oscillatory, and autonomous.William Bechtel & Adele Abrahamsen - unknown
    The mechanistic perspective has dominated biological disciplines such as biochemistry, physiology, cell and molecular biology, and neuroscience, especially during the 20th century. The primary strategy is reductionist: organisms are to be decomposed into component parts and operations at multiple levels. Researchers adopting this perspective have generated an enormous body of information about the mechanisms of life at scales ranging from the whole organism down to genetic and other molecular operations.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • Varieties of noise: Analogical reasoning in synthetic biology.Tarja Knuuttila & Andrea Loettgers - 2014 - Studies in History and Philosophy of Science Part A 48:76-88.
    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Simulated experiments: Methodology for a virtual world.Winsberg Eric - 2003 - Philosophy of Science 70 (1):105-125.
    This paper examines the relationship between simulation and experiment. Many discussions of simulation, and indeed the term "numerical experiments," invoke a strong metaphor of experimentation. On the other hand, many simulations begin as attempts to apply scientific theories. This has lead many to characterize simulation as lying between theory and experiment. The aim of the paper is to try to reconcile these two points of viewto understand what methodological and epistemological features simulation has in common with experimentation, while at the (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Experimenting on Theories.Deborah Dowling - 1999 - Science in Context 12 (2):261-273.
    The ArgumentThis paper sets out a framework for understanding how the scientific community constructs computer simulation as an epistemically and pragmatically useful methodology. The framework is based on comparisons between simulation and the loosely-defined categories of “theoretical work” and “experimental work.” Within that framework, the epistemological adequacy of simulation arises from its role as a mathematical manipulation of a complex, abstract theoretical model. To establish that adequacy demands a detailed “theoretical” grasp of the internal structure of the computer program. Simultaneously, (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Mechanism and Biological Explanation.William Bechtel - 2011 - Philosophy of Science 78 (4):533-557.
    This article argues that the basic account of mechanism and mechanistic explanation, involving sequential execution of qualitatively characterized operations, is itself insufficient to explain biological phenomena such as the capacity of living organisms to maintain themselves as systems distinct from their environment. This capacity depends on cyclic organization, including positive and negative feedback loops, which can generate complex dynamics. Understanding cyclically organized mechanisms with complex dynamics requires coordinating research directed at decomposing mechanisms into parts and operations with research using computational (...)
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • Modelling and representing: An artefactual approach to model-based representation.Tarja Knuuttila - 2011 - Studies in History and Philosophy of Science Part A 42 (2):262-271.
    The recent discussion on scientific representation has focused on models and their relationship to the real world. It has been assumed that models give us knowledge because they represent their supposed real target systems. However, here agreement among philosophers of science has tended to end as they have presented widely different views on how representation should be understood. I will argue that the traditional representational approach is too limiting as regards the epistemic value of modelling given the focus on the (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • The roles of integration in molecular systems biology.Maureen A. O’Malley & Orkun S. Soyer - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):58-68.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Calculating life? Duelling discourses in interdisciplinary systems biology.Jane Calvert & Joan H. Fujimura - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (2):155-163.
    A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Causal isolation robustness analysis: the combinatorial strategy of circadian clock research.Tarja Knuuttila & Andrea Loettgers - 2011 - Biology and Philosophy 26 (5):773-791.
    This paper distinguishes between causal isolation robustness analysis and independent determination robustness analysis and suggests that the triangulation of the results of different epistemic means or activities serves different functions in them. Circadian clock research is presented as a case of causal isolation robustness analysis: in this field researchers made use of the notion of robustness to isolate the assumed mechanism behind the circadian rhythm. However, in contrast to the earlier philosophical case studies on causal isolation robustness analysis (Weisberg and (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Synthetic Biology and the Emergence of a Dual Meaning of Noise.Andrea Loettgers - 2009 - Biological Theory 4 (4):340-356.
    The question is discussed how noise gained a functional meaning in the context of biology. According to the common view, noise is considered a disturbance or perturbation. I analyze how this understanding changed and what kind of developments during the last 10 years contributed to the emergence of a new understanding of noise. Results gained during a field study in a synthetic biology laboratory show that the emergence of this new research discipline—its highly interdisciplinary character, its new technologies and novel (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Downs and Ups of Mechanistic Research: Circadian Rhythm Research as an Exemplar. [REVIEW]William Bechtel - 2010 - Erkenntnis 73 (3):313 - 328.
    In the context of mechanistic explanation, reductionistic research pursues a decomposition of complex systems into their component parts and operations. Using research on the mechanisms responsible for circadian rhythms, I consider both the gains that have been made by discovering genes and proteins that figure in these intracellular oscillators and also highlight the increasingly recognized need to understand higher-level integration, both between cells in the central oscillator and between the central and peripheral oscillators. This history illustrates a common need to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The productive tension : mechanisms vs. templates in modeling the phenomena.Tarja Knuuttila & Andrea Loettgers - 2011 - In Paul Humphreys & Cyrille Imbert (eds.), Models, Simulations, and Representations. New York: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   15 citations