Switch to: Citations

Add references

You must login to add references.
  1. Modal Logic. An Introduction.Zia Movahed - 2002 - Tehran: Hermes Publishers.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • (2 other versions)Modal Logic.Marcus Kracht - 2002 - Bulletin of Symbolic Logic 8 (2):299-301.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Multimo dal Logics of Products of Topologies.J. Van Benthem, G. Bezhanishvili, B. Ten Cate & D. Sarenac - 2006 - Studia Logica 84 (3):369 - 392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion ${\bf S4}\oplus {\bf S4}$ . We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies. We prove that both of these logics are complete for the product of rational numbers ${\Bbb Q}\times {\Bbb Q}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Multimo dal logics of products of topologies.Johan van Benthem, Guram Bezhanishvili, Balder ten Cate & Darko Sarenac - 2006 - Studia Logica 84 (3):369-392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies.We prove that both of these logics are complete for the product of rational numbers ℚ × ℚ with the appropriate topologies.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Two-dimensional modal logic.Krister Segerberg - 1973 - Journal of Philosophical Logic 2 (1):77 - 96.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Universal grammar.Richard Montague - 1970 - Theoria 36 (3):373--398.
    Download  
     
    Export citation  
     
    Bookmark   321 citations  
  • The Incompleteness of S4 {bigoplus} S4 for the Product Space.Philip Kremer - 2015 - Studia Logica 103 (1):219-226.
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 \ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. Indeed, van (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neighbourhood Frame Product KxK.Andrey Kudinov - 2014 - In Rajeev Goré, Barteld Kooi & Agi Kurucz (eds.), Advances in Modal Logic, Volume 10: Papers From the Tenth Aiml Conference, Held in Groningen, the Netherlands, August 2014. London, England: CSLI Publications. pp. 373-386.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Modal Logic.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - Studia Logica 76 (1):142-148.
    Download  
     
    Export citation  
     
    Bookmark   394 citations  
  • Products of modal logics, part 1.D. Gabbay & V. Shehtman - 1998 - Logic Journal of the IGPL 6 (1):73-146.
    The paper studies many-dimensional modal logics corresponding to products of Kripke frames. It proves results on axiomatisability, the finite model property and decidability for product logics, by applying a rather elaborated modal logic technique: p-morphisms, the finite depth method, normal forms, filtrations. Applications to first order predicate logics are considered too. The introduction and the conclusion contain a discussion of many related results and open problems in the area.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Neighborhood Semantics for Modal Logic.Eric Pacuit - 2017 - Cham, Switzerland: Springer.
    This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic. In addition, the book discusses a broad range of topics, including standard modal logic results ; bisimulations for neighborhood models and other model-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • An essay in classical modal logic.Krister Segerberg - 1971 - Uppsala,: Filosofiska föreningen och Filosofiska institutionen vid Uppsala universitet.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • Advice on modal logic.D. Scott - 1980 - In Karel Lambert (ed.), Philosophical problems in logic: some recent developments. Hingham, MA: Sold and distributed in the U.S.A. and Canada by Kluwer Boston. pp. 143--173.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • The topological product of s4 and S.Philip Kremer - unknown
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊗ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations