Switch to: Citations

Add references

You must login to add references.
  1. Aristotle's syllogistic from the standpoint of modern formal logic.Jan Łukasiewicz - 1957 - New York: Garland.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • (1 other version)Aristotle's Syllogistic from the Standpoint of Modern Formal Logic.JAN LUKASIEWICZ - 1951 - Revue de Métaphysique et de Morale 57 (4):456-458.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • (1 other version)The decision problem for some classes of sentences without quantifiers.J. C. C. McKinsey - 1943 - Journal of Symbolic Logic 8 (2):61-76.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A propositional fragment of Leśniewski's ontology.Arata Ishimoto - 1977 - Studia Logica 36 (4):285-299.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Three-membered domains for Aristotle's syllogistic.Fred Johnson - 1991 - Studia Logica 50 (2):181 - 187.
    The paper shows that for any invalid polysyllogism there is a procedure for constructing a model with a domain with exactly three members and an interpretation that assigns non-empty, non-universal subsets of the domain to terms such that the model invalidates the polysyllogism.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Π⌕оотнка ст. лесцневского.Jerzy Słupecki - 1953 - Studia Logica 1 (1):112-112.
    Прототетика Ст. Лесневского является обобщением двузначного исчисления предложений. Выступают в ней рядом с терминами этого исчисления функторы (как постоянные так и переменные) всех тех семантических категорий какие могут быть определены, когда точкой исхода является категсрия предложений.В этом труде представлены три системы прототетики. Основным термином двух из них является импликация, ссновным термином третьей системы эквивалентность. Системы с основным термином импликации разнятся гравилами вывода. В одной из них действует так наз. правило проверки, в другой прабило зкстенсиональности. Первое из этих правил является обобщением (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Remarks on Axiomatic Rejection in Aristotle’s Syllogistic.Piotr Kulicki - 2002 - Studies in Logic and Theory of Knowledge 5:231-236.
    In the paper we examine the method of axiomatic rejection used to describe the set of nonvalid formulae of Aristotle's syllogistic. First we show that the condition which the system of syllogistic has to fulfil to be ompletely axiomatised, is identical to the condition for any first order theory to be used as a logic program. Than we study the connection between models used or refutation in a first order theory and rejected axioms for that theory. We show that any (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Axiomatisation of a Pure Calculus of Names.Piotr Kulicki - 2012 - Studia Logica 100 (5):921-946.
    A calculus of names is a logical theory describing relations between names. By a pure calculus of names we mean a quantifier-free formulation of such a theory, based on classical propositional calculus. An axiomatisation of a pure calculus of names is presented and its completeness is discussed. It is shown that the axiomatisation is complete in three different ways: with respect to a set theoretical model, with respect to Leśniewski's Ontology and in a sense defined with the use of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aksjomatyczne systemy rachunku nazw.Piotr Kulicki - 2011 - Wydawnictwo KUL.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Minimalne empiryczne podstawy teorii bytu a modele dla logiki nazw.Piotr Kulicki - 2010 - Roczniki Filozoficzne 58 (2):29-39.
    In the article attention is paid to the analogy between considerations concerning the number of objects that are the empirical basis for the theory of being and investigations concerning the size of the models necessary for solving formulas on the ground of calculus of names without quantifiers. In both cases a minimum of two objects appear as an answer to the question that has been posed. In explaining the noticed similarity the meaning aspect, as different from the referential aspect of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cardinalities of Models for Pure Calculi of Names.Andrzej Pietruszczak - 1994 - Reports on Mathematical Logic:87-102.
    Download  
     
    Export citation  
     
    Bookmark   4 citations