Switch to: Citations

References in:

Towards a proteomics meta-classification

In Kumar Anand & Smith Barry (eds.), IEEE Fourth Symposium on Bioinformatics and Bioengineering, Taichung, Taiwan. IEEE Press. pp. 419–427 (2004)

Add references

You must login to add references.
  1. Framework for formal ontology.Barry Smith & Kevin Mulligan - 1983 - Topoi 2 (1):73-85.
    The discussions which follow rest on a distinction, first expounded by Husserl, between formal logic and formal ontology. The former concerns itself with (formal) meaning-structures; the latter with formal structures amongst objects and their parts. The paper attempts to show how, when formal ontological considerations are brought into play, contemporary extensionalist theories of part and whole, and above all the mereology of Leniewski, can be generalised to embrace not only relations between concrete objects and object-pieces, but also relations between what (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • The Role of Foundational Relations in the Alignment of Biomedical Ontologies.Barry Smith & Cornelius Rosse - 2004 - In Stefan Schulze-Kremer (ed.), MedInfo. IOS Press. pp. 444-448.
    The Foundational Model of Anatomy (FMA) symbolically represents the structural organization of the human body from the macromolecular to the macroscopic levels, with the goal of providing a robust and consistent scheme for classifying anatomical entities that is designed to serve as a reference ontology in biomedical informatics. Here we articulate the need for formally clarifying the is-a and part-of relations in the FMA and similar ontology and terminology systems. We diagnose certain characteristic errors in the treatment of these relations (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The ontology of the Gene Ontology.Barry Smith, Jennifer Williams & Steffen Schulze-Kremer - 2003 - In Smith Barry, Williams Jennifer & Schulze-Kremer Steffen (eds.), AMIA 2003 Symposium Proceedings. AMIA. pp. 609-613.
    The rapidly increasing wealth of genomic data has driven the development of tools to assist in the task of representing and processing information about genes, their products and their functions. One of the most important of these tools is the Gene Ontology (GO), which is being developed in tandem with work on a variety of bioinformatics databases. An examination of the structure of GO, however, reveals a number of problems, which we believe can be resolved by taking account of certain (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Unified Medical Language System and the Gene Ontology: Some critical reflections.Anand Kumar & Barry Smith - 2003 - In A. Günter, R. Kruse & B. Neumann (eds.), KI 2003: Advances in Artificial Intelligence. Berlin: Springer. pp. 135-148.
    The Unified Medical Language System and the Gene Ontology are among the most widely used terminology resources in the biomedical domain. However, when we evaluate them in the light of simple principles for wellconstructed ontologies we find a number of characteristic inadequacies. Employing the theory of granular partitions, a new approach to the understanding of ontologies and of the relationships ontologies bear to instances in reality, we provide an application of this theory in relation to an example drawn from the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations