Switch to: Citations

Add references

You must login to add references.
  1. Elementary descent recursion and proof theory.Harvey Friedman & Michael Sheard - 1995 - Annals of Pure and Applied Logic 71 (1):1-45.
    We define a class of functions, the descent recursive functions, relative to an arbitrary elementary recursive system of ordinal notations. By means of these functions, we provide a general technique for measuring the proof-theoretic strength of a variety of systems of first-order arithmetic. We characterize the provable well-orderings and provably recursive functions of these systems, and derive various conservation and equiconsistency results.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • An Axiomatic Approach to Self-Referential Truth.Harvey Friedman & Michael Sheard - 1987 - Annals of Pure and Applied Logic 33 (1):1--21.
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • A System of Complete and Consistent Truth.Volker Halbach - 1994 - Notre Dame Journal of Formal Logic 35 (1):311--27.
    To the axioms of Peano arithmetic formulated in a language with an additional unary predicate symbol T we add the rules of necessitation and conecessitation T and axioms stating that T commutes with the logical connectives and quantifiers. By a result of McGee this theory is -inconsistent, but it can be approximated by models obtained by a kind of rule-of-revision semantics. Furthermore we prove that FS is equivalent to a system already studied by Friedman and Sheard and give an analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Der wahrheitsbegriff in den formalisierten sprachen.Alfred Tarski - 1935 - Studia Philosophica 1:261--405.
    Download  
     
    Export citation  
     
    Bookmark   343 citations  
  • Proof theory.K. Schütte - 1977 - New York: Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • A theory of formal truth arithmetically equivalent to ID.Andrea Cantini - 1990 - Journal of Symbolic Logic 55 (1):244 - 259.
    We present a theory VF of partial truth over Peano arithmetic and we prove that VF and ID 1 have the same arithmetical content. The semantics of VF is inspired by van Fraassen's notion of supervaluation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • A guide to truth predicates in the modern era.Michael Sheard - 1994 - Journal of Symbolic Logic 59 (3):1032-1054.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The role of parameters in bar rule and bar induction.Michael Rathjen - 1991 - Journal of Symbolic Logic 56 (2):715-730.
    For several subsystems of second order arithmetic T we show that the proof-theoretic strength of T + (bar rule) can be characterized in terms of T + (bar induction) □ , where the latter scheme arises from the scheme of bar induction by restricting it to well-orderings with no parameters. In addition, we demonstrate that ACA + 0 , ACA 0 + (bar rule) and ACA 0 + (bar induction) □ prove the same Π 1 1 -sentences.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Systems of predicative analysis.Solomon Feferman - 1964 - Journal of Symbolic Logic 29 (1):1-30.
    This paper is divided into two parts. Part I provides a resumé of the evolution of the notion of predicativity. Part II describes our own work on the subject.Part I§1. Conceptions of sets.Statements about sets lie at the heart of most modern attempts to systematize all (or, at least, all known) mathematics. Technical and philosophical discussions concerning such systematizations and the underlying conceptions have thus occupied a considerable portion of the literature on the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • The incompleteness theorems.Craig Smorynski - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 821 -- 865.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • (1 other version)Proof theory.Gaisi Takeuti - 1975 - New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co..
    This comprehensive monograph is a cornerstone in the area of mathematical logic and related fields. Focusing on Gentzen-type proof theory, the book presents a detailed overview of creative works by the author and other 20th-century logicians that includes applications of proof theory to logic as well as other areas of mathematics. 1975 edition.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Reflecting on incompleteness.Solomon Feferman - 1991 - Journal of Symbolic Logic 56 (1):1-49.
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • Grundlagen der Mathematik. Band I. [REVIEW]Rudolf Carnap - 1939 - Journal of Unified Science (Erkenntnis) 8 (1):184-187.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Weak and strong theories of truth.Michael Sheard - 2001 - Studia Logica 68 (1):89-101.
    A subtheory of the theory of self-referential truth known as FS is shown to be weak as a theory of truth but equivalent to full FS in its proof-theoretic strength.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Toward useful type-free theories. I.Solomon Feferman - 1984 - Journal of Symbolic Logic 49 (1):75-111.
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • On the relation between choice and comprehension principles in second order arithmetic.Andrea Cantini - 1986 - Journal of Symbolic Logic 51 (2):360-373.
    We give a new elementary proof of the comparison theorem relating $\sum^1_{n + 1}-\mathrm{AC}\uparrow$ and $\Pi^1_n -\mathrm{CA}\uparrow$ ; the proof does not use Skolem theories. By the same method we prove: a) $\sum^1_{n + 1}-\mathrm{DC} \uparrow \equiv (\Pi^1_n -CA)_{ , for suitable classes of sentences; b) $\sum^1_{n+1}-DC \uparrow$ proves the consistency of (Π 1 n -CA) ω k, for finite k, and hence is stronger than $\sum^1_{n+1}-AC \uparrow$ . a) and b) answer a question of Feferman and Sieg.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A note on the theory of positive induction, $${{\rm ID}^*_1}$$.Bahareh Afshari & Michael Rathjen - 2010 - Archive for Mathematical Logic 49 (2):275-281.
    The article shows a simple way of calibrating the strength of the theory of positive induction, ${{\rm ID}^{*}_{1}}$ . Crucially the proof exploits the equivalence of ${\Sigma^{1}_{1}}$ dependent choice and ω-model reflection for ${\Pi^{1}_{2}}$ formulae over ACA 0. Unbeknown to the authors, D. Probst had already determined the proof-theoretic strength of ${{\rm ID}^{*}_{1}}$ in Probst, J Symb Log, 71, 721–746, 2006.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • How truthlike can a predicate be? A negative result.Vann McGee - 1985 - Journal of Philosophical Logic 14 (4):399 - 410.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • (1 other version)Some theories with positive induction of ordinal strength ϕω.Gerhard Jäger & Thomas Strahm - 1996 - Journal of Symbolic Logic 61 (3):818-842.
    This paper deals with: (i) the theory ID # 1 which results from $\widehat{\mathrm{ID}}_1$ by restricting induction on the natural numbers to formulas which are positive in the fixed point constants, (ii) the theory BON(μ) plus various forms of positive induction, and (iii) a subtheory of Peano arithmetic with ordinals in which induction on the natural numbers is restricted to formulas which are Σ in the ordinals. We show that these systems have proof-theoretic strength φω 0.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Truth and reduction.Volker Halbach - 2000 - Erkenntnis 53 (1-2):97-126.
    The proof-theoretic results on axiomatic theories oftruth obtained by different authors in recent years are surveyed.In particular, the theories of truth are related to subsystems ofsecond-order analysis. On the basis of these results, thesuitability of axiomatic theories of truth for ontologicalreduction is evaluated.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Proof-Theoretic Analysis of Transfinitely Iterated Quasi Least Fixed Points.Dieter Probst - 2006 - Journal of Symbolic Logic 71 (3):721 - 746.
    The starting point of this article is an old question asked by Feferman in his paper on Hancock's conjecture [6] about the strength of ${\rm ID}_{1}^{\ast}$. This theory is obtained from the well-known theory ID₁ by restricting fixed point induction to formulas that contain fixed point constants only positively. The techniques used to perform the proof-theoretic analysis of ${\rm ID}_{1}^{\ast}$ also permit to analyze its transfinitely iterated variants ${\rm ID}_{\alpha}^{\ast}$. Thus, we eventually know that $|\widehat{{\rm ID}}_{\alpha}|=|{\rm ID}_{\alpha}^{\ast}|$.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Grundlagen der Mathematik I. Hilbert & Bernays - 1935 - Revue de Métaphysique et de Morale 42 (2):12-14.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)Truth and disorder.V. Halbach - 2000 - Erkenntnis 53 (1-2):97-126.
    Download  
     
    Export citation  
     
    Bookmark   1 citation