Switch to: References

Citations of:

Proof theory

New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co. (1975)

Add citations

You must login to add citations.
  1. Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Free Logics are Cut-Free.Andrzej Indrzejczak - 2021 - Studia Logica 109 (4):859-886.
    The paper presents a uniform proof-theoretic treatment of several kinds of free logic, including the logics of existence and definedness applied in constructive mathematics and computer science, and called here quasi-free logics. All free and quasi-free logics considered are formalised in the framework of sequent calculus, the latter for the first time. It is shown that in all cases remarkable simplifications of the starting systems are possible due to the special rule dealing with identity and existence predicate. Cut elimination is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sketch of a Proof-Theoretic Semantics for Necessity.Nils Kürbis - 2020 - In Nicola Olivetti, Rineke Verbrugge & Sara Negri (eds.), Advances in Modal Logic 13. Booklet of Short Papers. Helsinki: pp. 37-43.
    This paper considers proof-theoretic semantics for necessity within Dummett's and Prawitz's framework. Inspired by a system of Pfenning's and Davies's, the language of intuitionist logic is extended by a higher order operator which captures a notion of validity. A notion of relative necessary is defined in terms of it, which expresses a necessary connection between the assumptions and the conclusion of a deduction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Theories of truth and the maxim of minimal mutilation.Ole Thomassen Hjortland - 2017 - Synthese 199 (Suppl 3):787-818.
    Nonclassical theories of truth have in common that they reject principles of classical logic to accommodate an unrestricted truth predicate. However, different nonclassical strategies give up different classical principles. The paper discusses one criterion we might use in theory choice when considering nonclassical rivals: the maxim of minimal mutilation.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Notes on Formal Theories of Truth.Andrea Cantini - 1989 - Mathematical Logic Quarterly 35 (2):97-130.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • A Methodology for Teaching Logic-Based Skills to Mathematics Students.Arnold Cusmariu - 2016 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 3 (3):259-292.
    Mathematics textbooks teach logical reasoning by example, a practice started by Euclid; while logic textbooks treat logic as a subject in its own right without practical application to mathematics. Stuck in the middle are students seeking mathematical proficiency and educators seeking to provide it. To assist them, the article explains in practical detail how to teach logic-based skills such as: making mathematical reasoning fully explicit; moving from step to step in a mathematical proof in logically correct ways; and checking to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gentzenization of Trilattice Logics.Mitio Takano - 2016 - Studia Logica 104 (5):917-929.
    Sequent calculi for trilattice logics, including those that are determined by the truth entailment, the falsity entailment and their intersection, are given. This partly answers the problems in Shramko-Wansing.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A cut-free gentzen-type system for the logic of the weak law of excluded middle.Branislav R. Boričić - 1986 - Studia Logica 45 (1):39-53.
    The logic of the weak law of excluded middleKC p is obtained by adding the formula A A as an axiom scheme to Heyting's intuitionistic logicH p . A cut-free sequent calculus for this logic is given. As the consequences of the cut-elimination theorem, we get the decidability of the propositional part of this calculus, its separability, equality of the negationless fragments ofKC p andH p , interpolation theorems and so on. From the proof-theoretical point of view, the formulation presented (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Proof theory and constructive mathematics.Anne S. Troelstra - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 973--1052.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Modal sequents for normal modal logics.Claudio Cerrato - 1993 - Mathematical Logic Quarterly 39 (1):231-240.
    We present sequent calculi for normal modal logics where modal and propositional behaviours are separated, and we prove a cut elimination theorem for the basic system K, so as completeness theorems both for K itself and for its most popular enrichments. MSC: 03B45, 03F05.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Provability logic in the Gentzen formulation of arithmetic.Paolo Gentilini & P. Gentilini - 1992 - Mathematical Logic Quarterly 38 (1):535-550.
    In this paper are studied the properties of the proofs in PRA of provability logic sentences, i.e. of formulas which are Boolean combinations of formulas of the form PIPRA, where h is the Gödel-number of a sentence in PRA. The main result is a Normal Form Theorem on the proof-trees of provability logic sequents, which states that it is possible to split the proof into an arithmetical part, which contains only atomic formulas and has an essentially intuitionistic character, and into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Reflection Principles in Fragments of Peano Arithmetic.Hiroakira Ono - 1987 - Mathematical Logic Quarterly 33 (4):317-333.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gentzen’s consistency proof without heightlines.Annika Siders - 2013 - Archive for Mathematical Logic 52 (3-4):449-468.
    This paper gives a Gentzen-style proof of the consistency of Heyting arithmetic in an intuitionistic sequent calculus with explicit rules of weakening, contraction and cut. The reductions of the proof, which transform derivations of a contradiction into less complex derivations, are based on a method for direct cut-elimination without the use of multicut. This method treats contractions by tracing up from contracted cut formulas to the places in the derivation where each occurrence was first introduced. Thereby, Gentzen’s heightline argument, which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An ordinal analysis for theories of self-referential truth.Graham Emil Leigh & Michael Rathjen - 2010 - Archive for Mathematical Logic 49 (2):213-247.
    The first attempt at a systematic approach to axiomatic theories of truth was undertaken by Friedman and Sheard (Ann Pure Appl Log 33:1–21, 1987). There twelve principles consisting of axioms, axiom schemata and rules of inference, each embodying a reasonable property of truth were isolated for study. Working with a base theory of truth conservative over PA, Friedman and Sheard raised the following questions. Which subsets of the Optional Axioms are consistent over the base theory? What are the proof-theoretic strengths (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Notation systems for infinitary derivations.Wilfried Buchholz - 1991 - Archive for Mathematical Logic 30 (5-6):277-296.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Paradoxes and Failures of Cut.David Ripley - 2013 - Australasian Journal of Philosophy 91 (1):139 - 164.
    This paper presents and motivates a new philosophical and logical approach to truth and semantic paradox. It begins from an inferentialist, and particularly bilateralist, theory of meaning---one which takes meaning to be constituted by assertibility and deniability conditions---and shows how the usual multiple-conclusion sequent calculus for classical logic can be given an inferentialist motivation, leaving classical model theory as of only derivative importance. The paper then uses this theory of meaning to present and motivate a logical system---ST---that conservatively extends classical (...)
    Download  
     
    Export citation  
     
    Bookmark   165 citations  
  • Conservatively extending classical logic with transparent truth.David Ripley - 2012 - Review of Symbolic Logic 5 (2):354-378.
    This paper shows how to conservatively extend classical logic with a transparent truth predicate, in the face of the paradoxes that arise as a consequence. All classical inferences are preserved, and indeed extended to the full (truth—involving) vocabulary. However, not all classical metainferences are preserved; in particular, the resulting logical system is nontransitive. Some limits on this nontransitivity are adumbrated, and two proof systems are presented and shown to be sound and complete. (One proof system allows for Cut—elimination, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Distributive-lattice semantics of sequent calculi with structural rules.Alexej P. Pynko - 2009 - Logica Universalis 3 (1):59-94.
    The goal of the paper is to develop a universal semantic approach to derivable rules of propositional multiple-conclusion sequent calculi with structural rules, which explicitly involve not only atomic formulas, treated as metavariables for formulas, but also formula set variables, upon the basis of the conception of model introduced in :27–37, 2001). One of the main results of the paper is that any regular sequent calculus with structural rules has such class of sequent models that a rule is derivable in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Syntactical results on the arithmetical completeness of modal logic.Paolo Gentilini - 1993 - Studia Logica 52 (4):549 - 564.
    In this paper the PA-completeness of modal logic is studied by syntactical and constructive methods. The main results are theorems on the structure of the PA-proofs of suitable arithmetical interpretationsS of a modal sequentS, which allow the transformation of PA-proofs ofS into proof-trees similar to modal proof-trees. As an application of such theorems, a proof of Solovay's theorem on arithmetical completeness of the modal system G is presented for the class of modal sequents of Boolean combinations of formulas of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sentential logics and Maehara interpolation property.Janusz Czelakowski - 1985 - Studia Logica 44 (3):265 - 283.
    With each sentential logic C, identified with a structural consequence operation in a sentential language, the class Matr * (C) of factorial matrices which validate C is associated. The paper, which is a continuation of [2], concerns the connection between the purely syntactic property imposed on C, referred to as Maehara Interpolation Property (MIP), and three diagrammatic properties of the class Matr* (C): the Amalgamation Property (AP), the (deductive) Filter Extension Property (FEP) and Injections Transferable (IT). The main theorem of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On some proof theoretical properties of the modal logic GL.Marco Borga - 1983 - Studia Logica 42 (4):453 - 459.
    This paper deals with the system of modal logicGL, in particular with a formulation of it in terms of sequents. We prove some proof theoretical properties ofGL that allow to get the cut-elimination theorem according to Gentzen's procedure, that is, by double induction on grade and rank.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Labeled calculi and finite-valued logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On the Costs of Classical Logic.Luca Castaldo - 2021 - Erkenntnis 88 (3):1157-1188.
    This article compares classical (or -like) and nonclassical (or -like) axiomatisations of the fixed-point semantics developed by Kripke (J Philos 72(19): 690–716, 1975). Following the line of investigation of Halbach and Nicolai (J Philos Logic 47(2): 227–257, 2018), we do not compare and qua theories of truth simpliciter, but rather qua axiomatisations of the Kripkean conception of truth. We strengthen the central results of Halbach and Nicolai (2018) and Nicolai (Stud Log 106(1): 101–130, 2018), showing that, on the one hand, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Cogito Paradox.Arnold Cusmariu - forthcoming - Symposion. Theoretical and Applied Inquiries in Philosophy and Social Sciences.
    Arnold Cusmariu ABSTRACT: The Cogito formulation in Discourse on Method attributes properties to one conceptual category that belong to another. Correcting the error ends up defeating Descartes’ response to skepticism. His own creation, the Evil Genius, is to blame. Download PDF.
    Download  
     
    Export citation  
     
    Bookmark  
  • Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant.Norihiro Kamide, Yaroslav Shramko & Heinrich Wansing - 2017 - Studia Logica 105 (6):1193-1219.
    In this paper, bi-intuitionistic multilattice logic, which is a combination of multilattice logic and the bi-intuitionistic logic also known as Heyting–Brouwer logic, is introduced as a Gentzen-type sequent calculus. A Kripke semantics is developed for this logic, and the completeness theorem with respect to this semantics is proved via theorems for embedding this logic into bi-intuitionistic logic. The logic proposed is an extension of first-degree entailment logic and can be regarded as a bi-intuitionistic variant of the original classical multilattice logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Formally Measuring and Eliminating Extraneous Notions in Proofs.Andrew Arana - 2009 - Philosophia Mathematica 17 (2):189-207.
    Many mathematicians and philosophers of mathematics believe some proofs contain elements extraneous to what is being proved. In this paper I discuss extraneousness generally, and then consider a specific proposal for measuring extraneousness syntactically. This specific proposal uses Gentzen's cut-elimination theorem. I argue that the proposal fails, and that we should be skeptical about the usefulness of syntactic extraneousness measures.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Paradox of the Knower revisited.Walter Dean & Hidenori Kurokawa - 2014 - Annals of Pure and Applied Logic 165 (1):199-224.
    The Paradox of the Knower was originally presented by Kaplan and Montague [26] as a puzzle about the everyday notion of knowledge in the face of self-reference. The paradox shows that any theory extending Robinson arithmetic with a predicate K satisfying the factivity axiom K → A as well as a few other epistemically plausible principles is inconsistent. After surveying the background of the paradox, we will focus on a recent debate about the role of epistemic closure principles in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Understanding uniformity in Feferman's explicit mathematics.Thomas Glaß - 1995 - Annals of Pure and Applied Logic 75 (1-2):89-106.
    The aim of this paper is the analysis of uniformity in Feferman's explicit mathematics. The proof-strength of those systems for constructive mathematics is determined by reductions to subsystems of second-order arithmetic: If uniformity is absent, the method of standard structures yields that the strength of the join axiom collapses. Systems with uniformity and join are treated via cut elimination and asymmetrical interpretations in standard structures.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Proof-Theory of two Formalisations of Modal First-Order Logic.Yehuda Schwartz & George Tourlakis - 2010 - Studia Logica 96 (3):349-373.
    We introduce a Gentzen-style modal predicate logic and prove the cut-elimination theorem for it. This sequent calculus of cut-free proofs is chosen as a proxy to develop the proof-theory of the logics introduced in [14, 15, 4]. We present syntactic proofs for all the metatheoretical results that were proved model-theoretically in loc. cit. and moreover prove that the form of weak reflection proved in these papers is as strong as possible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cut Elimination in Transfinite Type Theory.Kenneth A. Bowen - 1973 - Mathematical Logic Quarterly 19 (8-10):141-162.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded arithmetic for NC, ALogTIME, L and NL.P. Clote & G. Takeuti - 1992 - Annals of Pure and Applied Logic 56 (1-3):73-117.
    We define theories of bounded arithmetic, whose definable functions and relations are exactly those in certain complexity classes. Based on a recursion-theoretic characterization of NC in Clote , the first-order theory TNC, whose principal axiom scheme is a form of short induction on notation for nondeterministic polynomial-time computable relations, has the property that those functions having nondeterministic polynomial-time graph Θ such that TNC x y Θ are exactly the functions in NC, computable on a parallel random-access machine in polylogarithmic parallel (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Hauptsatz for Stratified Comprehension: A Semantic Proof.Marcel Crabbé - 1994 - Mathematical Logic Quarterly 40 (4):481-489.
    We prove the cut-elimination theorem, Gentzen's Hauptsatz, for the system for stratified comprehension, i. e. Quine's NF minus extensionality.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A proof of Gentzen's Hauptsatz without multicut.Jan von Plato - 2001 - Archive for Mathematical Logic 40 (1):9-18.
    Gentzen's original proof of the Hauptsatz used a rule of multicut in the case that the right premiss of cut was derived by contraction. Cut elimination is here proved without multicut, by transforming suitably the derivation of the premiss of the contraction.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Note on generalizing theorems in algebraically closed fields.Matthias Baaz & Richard Zach - 1998 - Archive for Mathematical Logic 37 (5-6):297-307.
    The generalization properties of algebraically closed fields $ACF_p$ of characteristic $p > 0$ and $ACF_0$ of characteristic 0 are investigated in the sequent calculus with blocks of quantifiers. It is shown that $ACF_p$ admits finite term bases, and $ACF_0$ admits term bases with primality constraints. From these results the analogs of Kreisel's Conjecture for these theories follow: If for some $k$ , $A(1 + \cdots + 1)$ ( $n$ 1's) is provable in $k$ steps, then $(\forall x)A(x)$ is provable.
    Download  
     
    Export citation  
     
    Bookmark  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Valentini’s cut-elimination for provability logic resolved.Rajeev Goré & Revantha Ramanayake - 2012 - Review of Symbolic Logic 5 (2):212-238.
    In 1983, Valentini presented a syntactic proof of cut elimination for a sequent calculus GLSV for the provability logic GL where we have added the subscript V for “Valentini”. The sequents in GLSV were built from sets, as opposed to multisets, thus avoiding an explicit contraction rule. From a syntactic point of view, it is more satisfying and formal to explicitly identify the applications of the contraction rule that are ‘hidden’ in these set based proofs of cut elimination. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Working foundations.Solomon Feferman - 1985 - Synthese 62 (2):229 - 254.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A proof–theoretic study of the correspondence of hybrid logic and classical logic.H. Kushida & M. Okada - 2006 - Journal of Logic, Language and Information 16 (1):35-61.
    In this paper, we show the equivalence between the provability of a proof system of basic hybrid logic and that of translated formulas of the classical predicate logic with equality and explicit substitution by a purely proof–theoretic method. Then we show the equivalence of two groups of proof systems of hybrid logic: the group of labelled deduction systems and the group of modal logic-based systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuitionistic autoepistemic logic.Giambattista Amati, Luigia Carlucci-Aiello & Fiora Pirri - 1997 - Studia Logica 59 (1):103-120.
    In this paper we address the problem of combining a logic with nonmonotonic modal logic. In particular we study the intuitionistic case. We start from a formal analysis of the notion of intuitionistic consistency via the sequent calculus. The epistemic operator M is interpreted as the consistency operator of intuitionistic logic by introducing intuitionistic stable sets. On the basis of a bimodal structure we also provide a semantics for intuitionistic stable sets.
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistent logic and query answering in inconsistent databases.C. A. Middelburg - 2024 - Journal of Applied Non-Classical Logics 34 (1):133-154.
    This paper concerns the paraconsistent logic LPQ⊃,F and an application of it in the area of relational database theory. The notions of a relational database, a query applicable to a relational database, and a consistent answer to a query with respect to a possibly inconsistent relational database are considered from the perspective of this logic. This perspective enables among other things the definition of a consistent answer to a query with respect to a possibly inconsistent database without resort to database (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Craig's interpolation theorem for the intuitionistic logic and its extensions—A semantical approach.Hiroakira Ono - 1986 - Studia Logica 45 (1):19-33.
    A semantical proof of Craig's interpolation theorem for the intuitionistic predicate logic and some intermediate prepositional logics will be given. Our proof is an extension of Henkin's method developed in [4]. It will clarify the relation between the interpolation theorem and Robinson's consistency theorem for these logics and will enable us to give a uniform way of proving the interpolation theorem for them.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Provability logic in the Gentzen formulation of arithmetic.Paolo Gentilini & P. Gentilini - 1992 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38 (1):535-550.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (1):29-46.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • A Sequent Calculus for Urn Logic.Rohan French - 2015 - Journal of Logic, Language and Information 24 (2):131-147.
    Approximately speaking, an urn model for first-order logic is a model where the domain of quantification changes depending on the values of variables which have been bound by quantifiers previously. In this paper we introduce a model-changing semantics for urn-models, and then give a sequent calculus for urn logic by introducing formulas which can be read as saying that “after the individuals a1,..., an have been drawn, A is the case”.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Mathematical Logic Quarterly 36 (1):29-46.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Proof theory and ordinal analysis.W. Pohlers - 1991 - Archive for Mathematical Logic 30 (5-6):311-376.
    In the first part we show why ordinals and ordinal notations are naturally connected with proof theoretical research. We introduce the program of ordinal analysis. The second part gives examples of applications of ordinal analysis.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Systems of iterated projective ordinal notations and combinatorial statements about binary labeled trees.L. Gordeev - 1989 - Archive for Mathematical Logic 29 (1):29-46.
    We introduce the appropriate iterated version of the system of ordinal notations from [G1] whose order type is the familiar Howard ordinal. As in [G1], our ordinal notations are partly inspired by the ideas from [P] where certain crucial properties of the traditional Munich' ordinal notations are isolated and used in the cut-elimination proofs. As compared to the corresponding “impredicative” Munich' ordinal notations (see e.g. [B1, B2, J, Sch1, Sch2, BSch]), our ordinal notations arearbitrary terms in the appropriate simple term (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations