Switch to: References

Add citations

You must login to add citations.
  1. Alonzo Church.Oliver Marshall & Harry Deutsch - 2021 - Stanford Encyclopedia of Philosophy.
    Alonzo Church (1903–1995) was a renowned mathematical logician, philosophical logician, philosopher, teacher and editor. He was one of the founders of the discipline of mathematical logic as it developed after Cantor, Frege and Russell. He was also one of the principal founders of the Association for Symbolic Logic and the Journal of Symbolic Logic. The list of his students, mathematical and philosophical, is striking as it contains the names of renowned logicians and philosophers. In this article, we focus primarily on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An ordinal analysis for theories of self-referential truth.Graham Emil Leigh & Michael Rathjen - 2010 - Archive for Mathematical Logic 49 (2):213-247.
    The first attempt at a systematic approach to axiomatic theories of truth was undertaken by Friedman and Sheard (Ann Pure Appl Log 33:1–21, 1987). There twelve principles consisting of axioms, axiom schemata and rules of inference, each embodying a reasonable property of truth were isolated for study. Working with a base theory of truth conservative over PA, Friedman and Sheard raised the following questions. Which subsets of the Optional Axioms are consistent over the base theory? What are the proof-theoretic strengths (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aspects of a logical theory of assertion and inference.Ansten Klev - 2024 - Theoria 90 (5):534-555.
    The aim here is to investigate assertion and inference as notions of logic. Assertion will be explained in terms of its purpose, which is to give interlocutors the right to request the assertor to do a certain task. The assertion is correct if, and only if, the assertor knows how to do this task. Inference will be explained as an assertion equipped with what I shall call a justification profile, a strategy for making good on the assertion. The inference is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Where is the Gödel-Point Hiding: Gentzen’s Consistency Proof of 1936 and His Representation of Constructive Ordinals.Anna Horská - 2013 - Cham, Switzerland: Springer.
    This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of formal derivations. A notable aspect of the proof is the representation of ordinal numbers that was developed by Gentzen. This representation is analysed and connection to set-theoretical representation is found, namely an algorithm for translating Gentzen's notation into (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • 帰納型消去規則としてのウィトゲンシュタインの一意性規則.Mitsuhiro Okada - 2021 - Kagaku Tetsugaku 53 (2):95-114.
    Download  
     
    Export citation  
     
    Bookmark  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categoricity and Negation. A Note on Kripke’s Affirmativism.Constantin C. Brîncuș & Iulian D. Toader - 2019 - In Igor Sedlár & Martin Blicha (eds.), The Logica Yearbook 2018. College Publications. pp. 57-66.
    We argue that, if taken seriously, Kripke's view that a language for science can dispense with a negation operator is to be rejected. Part of the argument is a proof that positive logic, i.e., classical propositional logic without negation, is not categorical.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The proper treatment of variables in predicate logic.Kai F. Wehmeier - 2018 - Linguistics and Philosophy 41 (2):209-249.
    In §93 of The Principles of Mathematics, Bertrand Russell observes that “the variable is a very complicated logical entity, by no means easy to analyze correctly”. This assessment is borne out by the fact that even now we have no fully satisfactory understanding of the role of variables in a compositional semantics for first-order logic. In standard Tarskian semantics, variables are treated as meaning-bearing entities; moreover, they serve as the basic building blocks of all meanings, which are constructed out of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Russell's Revenge: A Problem for Bivalent Fregean Theories of Descriptions.Jan Heylen - 2017 - Pacific Philosophical Quarterly 98 (4):636-652.
    Fregean theories of descriptions as terms have to deal with improper descriptions. To save bivalence various proposals have been made that involve assigning referents to improper descriptions. While bivalence is indeed saved, there is a price to be paid. Instantiations of the same general scheme, viz. the one and only individual that is F and G is G, are not only allowed but even required to have different truth values.
    Download  
     
    Export citation  
     
    Bookmark  
  • Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (2 other versions)Step by recursive step: Church's analysis of effective calculability.Wilfried Sieg - 1997 - Bulletin of Symbolic Logic 3 (2):154-180.
    Alonzo Church's mathematical work on computability and undecidability is well-known indeed, and we seem to have an excellent understanding of the context in which it arose. The approach Church took to the underlying conceptual issues, by contrast, is less well understood. Why, for example, was "Church's Thesis" put forward publicly only in April 1935, when it had been formulated already in February/March 1934? Why did Church choose to formulate it then in terms of Gödel's general recursiveness, not his own λ (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Comments on the Contributions.Peter Schroeder-Heister - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 443-455.
    The contributions to this volume represent a broad range of aspects of proof-theoretic semantics. Some do so in the narrower, and some in the wider sense of the term. Some deal with issues I have been concerned with directly, and some tackle further problems. All of them open interesting new perspectives and develop the field in different directions. I will briefly comment on the significance of each contribution here.
    Download  
     
    Export citation  
     
    Bookmark  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A system of axiomatic set theory—Part I.Paul Bernays - 1937 - Journal of Symbolic Logic 2 (1):65-77.
    Introduction. The system of axioms for set theory to be exhibited in this paper is a modification of the axiom system due to von Neumann. In particular it adopts the principal idea of von Neumann, that the elimination of the undefined notion of a property (“definite Eigenschaft”), which occurs in the original axiom system of Zermelo, can be accomplished in such a way as to make the resulting axiom system elementary, in the sense of being formalizable in the logical calculus (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Mathematical Intuition and Natural Numbers: A Critical Discussion.Felix Mühlhölzer - 2010 - Erkenntnis 73 (2):265-292.
    Charles Parsons’ book “Mathematical Thought and Its Objects” of 2008 (Cambridge University Press, New York) is critically discussed by concentrating on one of Parsons’ main themes: the role of intuition in our understanding of arithmetic (“intuition” in the specific sense of Kant and Hilbert). Parsons argues for a version of structuralism which is restricted by the condition that some paradigmatic structure should be presented that makes clear the actual existence of structures of the necessary sort. Parsons’ paradigmatic structure is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theory and Reality : Metaphysics as Second Science.Staffan Angere - unknown
    Theory and Reality is about the connection between true theories and the world. A mathematical framefork for such connections is given, and it is shown how that framework can be used to infer facts about the structure of reality from facts about the structure of true theories, The book starts with an overview of various approaches to metaphysics. Beginning with Quine's programmatic "On what there is", the first chapter then discusses the perils involved in going from language to metaphysics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From completeness to archimedean completenes.Philip Ehrlich - 1997 - Synthese 110 (1):57-76.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Modal Homotopy Type Theory. The Prospect of a New Logic for Philosophy. [REVIEW]A. Klev & C. Zwanziger - 2022 - History and Philosophy of Logic 44 (3):337-342.
    1. The theory referred to by the—perhaps intimidating—main title of this book is an extension of Per Martin-Löf's dependent type theory. Much philosophical work pertaining to dependent type theory...
    Download  
     
    Export citation  
     
    Bookmark  
  • Bernays and set theory.Akihiro Kanamori - 2009 - Bulletin of Symbolic Logic 15 (1):43-69.
    We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higher-order reflection principles.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Realizability and intuitionistic logic.J. Diller & A. S. Troelstra - 1984 - Synthese 60 (2):253 - 282.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Hermann Weyl's intuitionistic mathematics.Dirk van Dalen - 1995 - Bulletin of Symbolic Logic 1 (2):145-169.
    Dedicated to Dana Scott on his sixtieth birthday.It is common knowledge that for a short while Hermann Weyl joined Brouwer in his pursuit of a revision of mathematics according to intuitionistic principles. There is, however, little in the literature that sheds light on Weyl's role and in particular on Brouwer's reaction to Weyl's allegiance to the cause of intuitionism. This short episode certainly raises a number of questions: what made Weyl give up his own program, spelled out in “Das Kontinuum”, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Identity in Martin‐Löf type theory.Ansten Klev - 2021 - Philosophy Compass 17 (2):e12805.
    The logic of identity contains riches not seen through the coarse lens of predicate logic. This is one of several lessons to draw from the subtle treatment of identity in Martin‐Löf type theory, to which the reader will be introduced in this article. After a brief general introduction we shall mainly be concerned with the distinction between identity propositions and identity judgements. These differ from each other both in logical form and in logical strength. Along the way, connections to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kurt Gödel on Logical, Theological, and Physical Antinomies.Tim Lethen - 2021 - Bulletin of Symbolic Logic 27 (3):267-297.
    This paper presents hitherto unpublished writings of Kurt Gödel concerning logical, epistemological, theological, and physical antinomies, which he generally considered as “the most interesting facts in modern logic,” and which he used as a basis for his famous metamathematical results. After investigating different perspectives on the notion of the logical structure of the antinomies and presenting two “antinomies of the intensional,” a new kind of paradox closely related to Gödel’s ontological proof for the existence of God is introduced and completed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gödel’s Philosophical Challenge.Wilfried Sieg - 2020 - Studia Semiotyczne 34 (1):57-80.
    The incompleteness theorems constitute the mathematical core of Gödel’s philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, when the formality of theories to which they apply is characterized via Turing machines. These machines codify human mechanical procedures that can be carried out without appealing to higher cognitive capacities. The question naturally arises, whether the theorems justify the claim that the human mind has mathematical abilities that are not shared by any machine. Turing admits that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Physical axiomatics: Freudenthal vs. Bunge. [REVIEW]David Salt - 1971 - Foundations of Physics 1 (4):307-313.
    The following remarks are intended to show that some of Freudenthal's recent criticisms of Bunge'sFoundations of Physics are wide of the mark. Freudenthal sets his criticisms of detail in a framework of some general considerations of the role played by axiomatic theories in the foundations of physics. In particular, he considers the notion of the objects of an axiomatic theory, the relation of an axiomatic theory to reality, and the notion of the transformation group of a theory. These topics are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The finitary standpoint.Bertil Rolf - 1980 - Erkenntnis 15 (3):287 - 300.
    Download  
     
    Export citation  
     
    Bookmark  
  • Kalmár's Argument Against the Plausibility of Church's Thesis.Máté Szabó - 2018 - History and Philosophy of Logic 39 (2):140-157.
    In his famous paper, An Unsolvable Problem of Elementary Number Theory, Alonzo Church identified the intuitive notion of effective calculability with the mathematically precise notion of recursiveness. This proposal, known as Church's Thesis, has been widely accepted. Only a few papers have been written against it. One of these is László Kalmár's An Argument Against the Plausibility of Church's Thesis from 1959. The aim of this paper is to present Kalmár's argument and to fill in missing details based on his (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometrisation of First-Order Logic.Roy Dyckhoff & Sara Negri - 2015 - Bulletin of Symbolic Logic 21 (2):123-163.
    That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • From Axiomatic Logic to Natural Deduction.Jan von Plato - 2014 - Studia Logica 102 (6):1167-1184.
    Recently discovered documents have shown how Gentzen had arrived at the final form of natural deduction, namely by trying out a great number of alternative formulations. What led him to natural deduction in the first place, other than the general idea of studying “mathematical inference as it appears in practice,” is not indicated anywhere in his publications or preserved manuscripts. It is suggested that formal work in axiomatic logic lies behind the birth of Gentzen’s natural deduction, rather than any single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Hilbert's Axiomatics of Propositional Logic.V. Michele Abrusci - 2014 - Perspectives on Science 22 (1):115-132.
    Hilbert's conference lectures during the year 1922, Neuebegründung der Mathematik. Erste Mitteilung and Die logischen Grundlagen der Mathematik (both are published in (Hilbert [1935] 1965) pp. 157-195), contain his first public presentation of an axiom system for propositional logic, or at least for a fragment of propositional logic, which is largely influenced by the study on logical woks of Frege and Russell during the previous years.The year 1922 is at the beginning of Hilbert's foundational program in its definitive form. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nothing matters too much, or Wright is wrong.Robert Black - 2000 - Analysis 60 (3):229-237.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Incomplete Symbols — Definite Descriptions Revisited.Norbert Gratzl - 2015 - Journal of Philosophical Logic 44 (5):489-506.
    We investigate incomplete symbols, i.e. definite descriptions with scope-operators. Russell famously introduced definite descriptions by contextual definitions; in this article definite descriptions are introduced by rules in a specific calculus that is very well suited for proof-theoretic investigations. That is to say, the phrase ‘incomplete symbols’ is formally interpreted as to the existence of an elimination procedure. The last section offers semantical tools for interpreting the phrase ‘no meaning in isolation’ in a formal way.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Defining relevant implication in a propositionally quantified S.Philip Kremer - 1997 - Journal of Symbolic Logic 62 (4):1057-1069.
    R. K. Meyer once gave precise form to the question of whether relevant implication can be defined in any modal system, and his answer was `no'. In the present paper, we extend S4, first with propositional quantifiers, to the system S4π+; and then with definite propositional descriptions, to the system S4π+ lp . We show that relevant implication can in some sense be defined in the modal system S4π+ lp , although it cannot be defined in S4π+.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Inference Rules and the Meaning of the Logical Constants.Hermógenes Oliveira - 2019 - Dissertation, Eberhard Karls Universität Tübingen
    The dissertation provides an analysis and elaboration of Michael Dummett's proof-theoretic notions of validity. Dummett's notions of validity are contrasted with standard proof-theoretic notions and formally evaluated with respect to their adequacy to propositional intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Godel's unpublished papers on foundations of mathematics.W. W. Tatt - 2001 - Philosophia Mathematica 9 (1):87-126.
    Download  
     
    Export citation  
     
    Bookmark   8 citations