Switch to: Citations

Add references

You must login to add references.
  1. What Makes Time Special?Craig Callender - 2017 - Oxford: Oxford University Press.
    As we navigate through life, we model time as flowing, the present as special, and the past as “dead.” This model of time—manifest time—develops in childhood and later thoroughly infiltrates our language, thought, and behavior. It is part of what makes a human life recognizably human. Yet if physics is correct, this model of the world is deeply mistaken. This book is about this conflict between manifest and physical time. The first half dives into the physics and philosophy to establish (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches to quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - 2021 - Synthese 199 (2):371–393.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing that it (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Spacetime is as spacetime does.Vincent Lam & Christian Wüthrich - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:39-51.
    Theories of quantum gravity generically presuppose or predict that the reality underlying relativistic spacetimes they are describing is significantly non-spatiotemporal. On pain of empirical incoherence, approaches to quantum gravity must establish how relativistic spacetime emerges from their non-spatiotemporal structures. We argue that in order to secure this emergence, it is sufficient to establish that only those features of relativistic spacetimes functionally relevant in producing empirical evidence must be recovered. In order to complete this task, an account must be given of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Relativity: the general theory.John Lighton Synge (ed.) - 1960 - New York,: Interscience Publishers.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Proving the principle: Taking geodesic dynamics too seriously in Einstein's theory.Michael Tamir - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):137-154.
    In this paper I critically review the long history of attempts to formulate and derive the geodesic principle, which claims that massive bodies follow geodesic paths in general relativity theory. I argue that if the principle is interpreted as a dynamical law of motion describing the actual evolution of gravitating bodies as endorsed by Einstein, then it is impossible to apply the law to massive bodies in a way that is coherent with his own field equations. Rejecting this canonical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Proving the principle: Taking geodesic dynamics too seriously in Einstein’s theory.Michael Tamir - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):137-154.
    In this paper I critically review the long history of attempts to formulate and derive the geodesic principle, which claims that massive bodies follow geodesic paths in general relativity theory. I argue that if the principle is interpreted as a dynamical law of motion describing the actual evolution of gravitating bodies as endorsed by Einstein, then it is impossible to apply the law to massive bodies in a way that is coherent with his own field equations. Rejecting this canonical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Finding the world in the wave function: some strategies for solving the macro-object problem.Alyssa Ney - 2020 - Synthese 197 (10):4227-4249.
    Realists wanting to capture the facts of quantum entanglement in a metaphysical interpretation find themselves faced with several options: to grant some species of fundamental nonseparability, adopt holism, or to view localized spacetime systems as ultimately reducible to a higher-dimensional entity, the quantum state or wave function. Those adopting the latter approach and hoping to view the macroscopic world as grounded in the quantum wave function face the macro-object problem. The challenge is to articulate the metaphysical relation obtaining between three-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Clocks and chronogeometry: Rotating spacetimes and the relativistic null hypothesis.Tushar Menon, Niels Linnemann & James Read - 2018 - British Journal for the Philosophy of Science (4):1287-1317.
    Recent work in the physics literature demonstrates that, in particular classes of rotating spacetimes, physical light rays in general do not traverse null geodesics. Having presented this result, we discuss its philosophical significance, both for the clock hypothesis, and for the operational meaning of the metric field.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Space Emergence in Contemporary Physics: Why We Do Not Need Fundamentality, Layers of Reality and Emergence.Baptiste Le Bihan - 2018 - Disputatio 10 (49):71-95.
    ‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality and (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Priority Monism Beyond Spacetime.Baptiste Le Bihan - 2018 - Metaphysica 19 (1):95-111.
    I will defend two claims. First, Schaffer's priority monism is in tension with many research programs in quantum gravity. Second, priority monism can be modified into a view more amenable to this physics. The first claim is grounded in the fact that promising approaches to quantum gravity such as loop quantum gravity or string theory deny the fundamental reality of spacetime. Since fundamental spacetime plays an important role in Schaffer's priority monism by being identified with the fundamental structure, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Physical relativity from a functionalist perspective.Eleanor Knox - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:118-124.
    This paper looks at the relationship between spacetime functionalism and Harvey Brown’s dynamical relativity. One popular way of reading and extending Brown’s programme in the literature rests on viewing his position as a version of relationism. But a kind of spacetime functionalism extends the project in a different way, by focussing on the account Brown gives of the role of spacetime in relativistic theories. It is then possible to see this as giving a functional account of the concept of spacetime (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Effective spacetime geometry.Eleanor Knox - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):346-356.
    I argue that the need to understand spacetime structure as emergent in quantum gravity is less radical and surprising it might appear. A clear understanding of the link between general relativity's geometrical structures and empirical geometry reveals that this empirical geometry is exactly the kind of thing that could be an effective and emergent matter. Furthermore, any theory with torsion will involve an effective geometry, even though these theories look, at first glance, like theories with straightforward spacetime geometry. As it's (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Emergent spacetime and empirical (in) coherence.Nick Huggett & Christian Wüthrich - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):276-285.
    Numerous approaches to a quantum theory of gravity posit fundamental ontologies that exclude spacetime, either partially or wholly. This situation raises deep questions about how such theories could relate to the empirical realm, since arguably only entities localized in spacetime can ever be observed. Are such entities even possible in a theory without fundamental spacetime? How might they be derived, formally speaking? Moreover, since by assumption the fundamental entities cannot be smaller than the derived and so cannot ‘compose’ them in (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • What Experience Cannot Teach Us About Time.Akiko M. Frischhut - 2015 - Topoi 34 (1):143-155.
    Does the A-theory have an intuitive advantage over the B-theory? Many A-theorists have claimed so, arguing that their theory has a much better explanation for the fact that we all experience the passage of time: we experience time as passing because time really does pass. In this paper I expose and reject the argument behind the A-theorist’s claim. I argue that all parties have conceded far too easily that there is an experience that needs explaining in the first place. For (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Physics’ silence on time.Yuval Dolev - 2018 - European Journal for Philosophy of Science 8 (3):455-469.
    In this paper I argue that physics is, always was, and probably always will be voiceless with respect to tense and passage, and that, therefore, if, as I believe, tense and passage are the essence of time, physics’ contribution to our understanding of time can only be limited. The argument, in a nutshell, is that if "physics has no possibility of expression for the Now", to quote Einstein, then it cannot add anything to the study of tense and passage, and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Scientific Image.William Demopoulos & Bas C. van Fraassen - 1982 - Philosophical Review 91 (4):603.
    Download  
     
    Export citation  
     
    Bookmark   1759 citations  
  • General relativity needs no interpretation.Erik Curiel - 2009 - Philosophy of Science 76 (1):44-72.
    I argue that, contrary to the recent claims of physicists and philosophers of physics, general relativity requires no interpretation in any substantive sense of the term. I canvass the common reasons given in favor of the alleged need for an interpretation, including the difficulty in coming to grips with the physical significance of diffeomorphism invariance and of singular structure, and the problems faced in the search for a theory of quantum gravity. I find that none of them shows any defect (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Drawing philosophical lessons from Perrin’s experiments on Brownian motion: A response to van Fraassen.Alan Chalmers - 2011 - British Journal for the Philosophy of Science 62 (4):711-732.
    In a recent article, van Fraassen has taken issue with the use to which Perrin’s experiments on Brownian motion have been put by philosophers, especially those defending scientific realism. He defends an alternative position by analysing the details of Perrin’s case in its historical context. In this reply, I argue that van Fraassen has not done the job well enough and I extend and in some respects attempt to correct his claims by close attention to the historical details.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Origins of Time-Asymmetry in Thermodynamics: The Minus First Law.Harvey R. Brown & Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):525-538.
    This paper investigates what the source of time-asymmetry is in thermodynamics, and comments on the question whether a time-symmetric formulation of the Second Law is possible.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The Wave Function: Essays on the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press USA.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • The Wave Function: Essays in the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics?
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • The Structure of Scientific Theories.Rasmus Grønfeldt Winther - 2015 - Stanford Encyclopedia of Philosophy.
    Scientific inquiry has led to immense explanatory and technological successes, partly as a result of the pervasiveness of scientific theories. Relativity theory, evolutionary theory, and plate tectonics were, and continue to be, wildly successful families of theories within physics, biology, and geology. Other powerful theory clusters inhabit comparatively recent disciplines such as cognitive science, climate science, molecular biology, microeconomics, and Geographic Information Science (GIS). Effective scientific theories magnify understanding, help supply legitimate explanations, and assist in formulating predictions. Moving from their (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Physical relativity: Space–time structure from a dynamical perspective.Harvey Brown - 2005 - Philosophy 82 (321):498-503.
    Download  
     
    Export citation  
     
    Bookmark   225 citations  
  • On Spacetime Functionalism.David John Baker - manuscript
    Eleanor Knox has argued that our concept of spacetime applies to whichever structure plays a certain functional role in the laws (the role of determining local inertial structure). I raise two complications for this approach. First, our spacetime concept seems to have the structure of a cluster concept, which means that Knox's inertial criteria for spacetime cannot succeed with complete generality. Second, the notion of metaphysical fundamentality may feature in the spacetime concept, in which case spacetime functionalism may be uninformative (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Realist Interpretation of the Causal-Inertial Structure of Spacetime.Herbert Korte - 1982 - Dissertation, The University of Western Ontario (Canada)
    The central aim of this dissertation is to clarify, defend and develop a realist field ontology of the causal-inertial structure of spacetime forcefully advanced by Hermann Weyl. Weyl's field ontology of spacetime structure may roughly be described as follows. The Special and General as well as the non-relativistic spacetime theories are principle theories of spacetime structure. They all postulate various structural constraints, and events within spacetime are held to satisfy these constraints. When interpreted physically, these mathematical structures correspond to physical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hermann Weyl.John L. Bell - 2010 - Revue Philosophique de la France Et de l'Etranger.
    Download  
     
    Export citation  
     
    Bookmark   10 citations