Switch to: Citations

Add references

You must login to add references.
  1. Data models, representation and adequacy-for-purpose.Alisa Bokulich & Wendy Parker - 2021 - European Journal for Philosophy of Science 11 (1):1-26.
    We critically engage two traditional views of scientific data and outline a novel philosophical view that we call the pragmatic-representational view of data. On the PR view, data are representations that are the product of a process of inquiry, and they should be evaluated in terms of their adequacy or fitness for particular purposes. Some important implications of the PR view for data assessment, related to misrepresentation, context-sensitivity, and complementary use, are highlighted. The PR view provides insight into the common (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Prediction versus understanding in computationally enhanced neuroscience.Mazviita Chirimuuta - 2020 - Synthese 199 (1-2):767-790.
    The use of machine learning instead of traditional models in neuroscience raises significant questions about the epistemic benefits of the newer methods. I draw on the literature on model intelligibility in the philosophy of science to offer some benchmarks for the interpretability of artificial neural networks used as a predictive tool in neuroscience. Following two case studies on the use of ANN’s to model motor cortex and the visual system, I argue that the benefit of providing the scientist with understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Construct validity in psychological tests – the case of implicit social cognition.Uljana Feest - 2020 - European Journal for Philosophy of Science 10 (1):1-24.
    This paper looks at the question of what it means for a psychological test to have construct validity. I approach this topic by way of an analysis of recent debates about the measurement of implicit social cognition. After showing that there is little theoretical agreement about implicit social cognition, and that the predictive validity of implicit tests appears to be low, I turn to a debate about their construct validity. I show that there are two questions at stake: First, what (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding misguided? In (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • A Philosophy for the Science of Well-Being.Anna Alexandrova - 2017 - New York: Oxford University Press.
    Do the new sciences of well-being provide knowledge that respects the nature of well-being? This book written from the perspective of philosophy of science articulates how this field can speak to well-being proper and can do so in a way that respects the demands of objectivity and measurement.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS.Stefano Canali - 2016 - Big Data and Society 3 (2).
    Recently, it has been argued that the use of Big Data transforms the sciences, making data-driven research possible and studying causality redundant. In this paper, I focus on the claim on causal knowledge by examining the Big Data project EXPOsOMICS, whose research is funded by the European Commission and considered capable of improving our understanding of the relation between exposure and disease. While EXPOsOMICS may seem the perfect exemplification of the data-driven view, I show how causal knowledge is necessary for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Models, measurement and computer simulation: the changing face of experimentation.Margaret Morrison - 2009 - Philosophical Studies 143 (1):33-57.
    The paper presents an argument for treating certain types of computer simulation as having the same epistemic status as experimental measurement. While this may seem a rather counterintuitive view it becomes less so when one looks carefully at the role that models play in experimental activity, particularly measurement. I begin by discussing how models function as “measuring instruments” and go on to examine the ways in which simulation can be said to constitute an experimental activity. By focussing on the connections (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • The Causal Nature of Modeling with Big Data.Wolfgang Pietsch - 2016 - Philosophy and Technology 29 (2):137-171.
    I argue for the causal character of modeling in data-intensive science, contrary to widespread claims that big data is only concerned with the search for correlations. After discussing the concept of data-intensive science and introducing two examples as illustration, several algorithms are examined. It is shown how they are able to identify causal relevance on the basis of eliminative induction and a related difference-making account of causation. I then situate data-intensive modeling within a broader framework of an epistemology of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Science Outside the Laboratory: Measurement in Field Science and Economics.Marcel Boumans - 2015 - New York, US: Oxford University Press.
    The conduct of most of social science occurs outside the laboratory. Such studies in field science explore phenomena that cannot for practical, technical, or ethical reasons be explored under controlled conditions. These phenomena cannot be fully isolated from their environment or investigated by manipulation or intervention. Yet measurement, including rigorous or clinical measurement, does provide analysts with a sound basis for discerning what occurs under field conditions, and why. In Science Outside the Laboratory, Marcel Boumans explores the state of measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Data science and molecular biology: prediction and mechanistic explanation.Ezequiel López-Rubio & Emanuele Ratti - 2021 - Synthese 198 (4):3131-3156.
    In the last few years, biologists and computer scientists have claimed that the introduction of data science techniques in molecular biology has changed the characteristics and the aims of typical outputs (i.e. models) of such a discipline. In this paper we will critically examine this claim. First, we identify the received view on models and their aims in molecular biology. Models in molecular biology are mechanistic and explanatory. Next, we identify the scope and aims of data science (machine learning in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Data science and molecular biology: prediction and mechanistic explanation.Ezequiel López-Rubio & Emanuele Ratti - 2019 - Synthese (4):1-26.
    In the last few years, biologists and computer scientists have claimed that the introduction of data science techniques in molecular biology has changed the characteristics and the aims of typical outputs (i.e. models) of such a discipline. In this paper we will critically examine this claim. First, we identify the received view on models and their aims in molecular biology. Models in molecular biology are mechanistic and explanatory. Next, we identify the scope and aims of data science (machine learning in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Calibration: Modelling the measurement process.Eran Tal - 2017 - Studies in History and Philosophy of Science Part A 65:33-45.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • What kind of novelties can machine learning possibly generate? The case of genomics.Emanuele Ratti - 2020 - Studies in History and Philosophy of Science Part A 83:86-96.
    Machine learning (ML) has been praised as a tool that can advance science and knowledge in radical ways. However, it is not clear exactly how radical are the novelties that ML generates. In this article, I argue that this question can only be answered contextually, because outputs generated by ML have to be evaluated on the basis of the theory of the science to which ML is applied. In particular, I analyze the problem of novelty of ML outputs in the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Is Construct Validation Valid?Anna Alexandrova & Daniel M. Haybron - 2016 - Philosophy of Science 83 (5):1098-1109.
    What makes a measure of well-being valid? The dominant approach today, construct validation, uses psychometrics to ensure that questionnaires behave in accordance with background knowledge. Our first claim is interpretive—construct validation obeys a coherentist logic that seeks to balance diverse sources of evidence about the construct in question. Our second claim is critical—while in theory this logic is defensible, in practice it does not secure valid measures. We argue that the practice of construct validation in well-being research is theory avoidant, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Invariance and calibration.Marcel J. Boumans - unknown
    The Representational Theory of Measurement conceives measurement as establishing homomorphisms from empirical relational structures into numerical relation structures, called models. Models function as measuring instruments by transferring observations of an economic system into quantitative facts about that system. These facts are evaluated by their accuracy. Accuracy is achieved by calibration. For calibration standards are needed. Then two strategies can be distinguished. One aims at estimating the invariant (structural) equations of the system. The other is to use known stable facts about (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Epistemology of Data Science: Conceptual Tools for a New Inductivism.Wolfgang Pietsch - 2021 - Springer Verlag.
    This book addresses controversies concerning the epistemological foundations of data science: Is it a genuine science? Or is data science merely some inferior practice that can at best contribute to the scientific enterprise, but cannot stand on its own? The author proposes a coherent conceptual framework with which these questions can be rigorously addressed. Readers will discover a defense of inductivism and consideration of the arguments against it: an epistemology of data science more or less by definition has to be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ethical considerations and statistical analysis of industry involvement in machine learning research.Thilo Hagendorff & Kristof Meding - 2023 - AI and Society 38 (1):35-45.
    Industry involvement in the machine learning (ML) community seems to be increasing. However, the quantitative scale and ethical implications of this influence are rather unknown. For this purpose, we have not only carried out an informed ethical analysis of the field, but have inspected all papers of the main ML conferences NeurIPS, CVPR, and ICML of the last 5 years—almost 11,000 papers in total. Our statistical approach focuses on conflicts of interest, innovation, and gender equality. We have obtained four main (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations