Switch to: References

Add citations

You must login to add citations.
  1. Boon and Bane: On the Role of Adjustable Parameters in Simulation Models.Hans Hasse & Johannes Lenhard - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    We claim that adjustable parameters play a crucial role in building and applying simulation models. We analyze that role and illustrate our findings using examples from equations of state in thermodynamics. In building simulation models, two types of experiments, namely, simulation and classical experiments, interact in a feedback loop, in which model parameters are adjusted. A critical discussion of how adjustable parameters function shows that they are boon and bane of simulation. They help to enlarge the scope of simulation far (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Why computer simulations are not inferences, and in what sense they are experiments.Florian J. Boge - 2018 - European Journal for Philosophy of Science 9 (1):1-30.
    The question of where, between theory and experiment, computer simulations (CSs) locate on the methodological map is one of the central questions in the epistemology of simulation (cf. Saam Journal for General Philosophy of Science, 48, 293–309, 2017). The two extremes on the map have them either be a kind of experiment in their own right (e.g. Barberousse et al. Synthese, 169, 557–574, 2009; Morgan 2002, 2003, Journal of Economic Methodology, 12(2), 317–329, 2005; Morrison Philosophical Studies, 143, 33–57, 2009; Morrison (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Polycratic hierarchies and networks: what simulation-modeling at the LHC can teach us about the epistemology of simulation.Florian J. Boge & Christian Zeitnitz - 2020 - Synthese 199 (1-2):445-480.
    Large scale experiments at CERN’s Large Hadron Collider rely heavily on computer simulations, a fact that has recently caught philosophers’ attention. CSs obviously require appropriate modeling, and it is a common assumption among philosophers that the relevant models can be ordered into hierarchical structures. Focusing on LHC’s ATLAS experiment, we will establish three central results here: with some distinct modifications, individual components of ATLAS’ overall simulation infrastructure can be ordered into hierarchical structures. Hence, to a good degree of approximation, hierarchical (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Incompatibility and the pessimistic induction: a challenge for selective realism.Florian J. Boge - 2021 - European Journal for Philosophy of Science 11 (2):1-31.
    Two powerful arguments have famously dominated the realism debate in philosophy of science: The No Miracles Argument (NMA) and the Pessimistic Meta-Induction (PMI). A standard response to the PMI is selective scientific realism (SSR), wherein only the working posits of a theory are considered worthy of doxastic commitment. Building on the recent debate over the NMA and the connections between the NMA and the PMI, I here consider a stronger inductive argument that poses a direct challenge for SSR: Because it (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How to infer explanations from computer simulations.Florian J. Boge - 2020 - Studies in History and Philosophy of Science Part A 82:25-33.
    Computer simulations are involved in numerous branches of modern science, and science would not be the same without them. Yet the question of how they can explain real-world processes remains an issue of considerable debate. In this context, a range of authors have highlighted the inferences back to the world that computer simulations allow us to draw. I will first characterize the precise relation between computer and target of a simulation that allows us to draw such inferences. I then argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why Monte Carlo Simulations Are Inferences and Not Experiments.Claus Beisbart & John D. Norton - 2012 - International Studies in the Philosophy of Science 26 (4):403-422.
    Monte Carlo simulations arrive at their results by introducing randomness, sometimes derived from a physical randomizing device. Nonetheless, we argue, they open no new epistemic channels beyond that already employed by traditional simulations: the inference by ordinary argumentation of conclusions from assumptions built into the simulations. We show that Monte Carlo simulations cannot produce knowledge other than by inference, and that they resemble other computer simulations in the manner in which they derive their conclusions. Simple examples of Monte Carlo simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • How can computer simulations produce new knowledge?Claus Beisbart - 2012 - European Journal for Philosophy of Science 2 (3):395-434.
    It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Are computer simulations experiments? And if not, how are they related to each other?Claus Beisbart - 2018 - European Journal for Philosophy of Science 8 (2):171-204.
    Computer simulations and experiments share many important features. One way of explaining the similarities is to say that computer simulations just are experiments. This claim is quite popular in the literature. The aim of this paper is to argue against the claim and to develop an alternative explanation of why computer simulations resemble experiments. To this purpose, experiment is characterized in terms of an intervention on a system and of the observation of the reaction. Thus, if computer simulations are experiments, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • About the warrants of computer-based empirical knowledge.Anouk Barberousse & Marion Vorms - 2014 - Synthese 191 (15):3595-3620.
    Computer simulations are widely used in current scientific practice, as a tool to obtain information about various phenomena. Scientists accordingly rely on the outputs of computer simulations to make statements about the empirical world. In that sense, simulations seem to enable scientists to acquire empirical knowledge. The aim of this paper is to assess whether computer simulations actually allow for the production of empirical knowledge, and how. It provides an epistemological analysis of present-day empirical science, to which the traditional epistemological (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the presumed superiority of analytical solutions over numerical methods.Vincent Ardourel & Julie Jebeile - 2017 - European Journal for Philosophy of Science 7 (2):201-220.
    An important task in mathematical sciences is to make quantitative predictions, which is often done via the solution of differential equations. In this paper, we investigate why, to perform this task, scientists sometimes choose to use numerical methods instead of analytical solutions. Via several examples, we argue that the choice for numerical methods can be explained by the fact that, while making quantitative predictions seems at first glance to be facilitated by analytical solutions, this is actually often much easier with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Qualitative Models in Computational Simulative Sciences: Representation, Confirmation, Experimentation.Nicola Angius - 2019 - Minds and Machines 29 (3):397-416.
    The Epistemology Of Computer Simulation has developed as an epistemological and methodological analysis of simulative sciences using quantitative computational models to represent and predict empirical phenomena of interest. In this paper, Executable Cell Biology and Agent-Based Modelling are examined to show how one may take advantage of qualitative computational models to evaluate reachability properties of reactive systems. In contrast to the thesis, advanced by EOCS, that computational models are not adequate representations of the simulated empirical systems, it is shown how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against Harmony: Infinite Idealizations and Causal Explanation.Iulian D. Toader - 2015 - In Iulian D. Toader, Ilie Parvu & Gabriel Sandu (eds.), Boston Studies in the Philosophy and History of Science, vol. 313: Springer. pp. 291-301.
    This paper argues against the view that the standard explanation of phase transitions in statistical mechanics may be considered a causal explanation, a distortion that can nevertheless successfully represent causal relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Homepage Eckhart Arnold.Eckhart Arnold (ed.) - 2001 - Munich: Preprint.
    This is my personal homepage. Find my philosophical papers under "Philosophy".
    Download  
     
    Export citation  
     
    Bookmark  
  • Model Organisms as Simulators: The Context of Cross-Species Research and Emergence.Sim-Hui Tee - 2019 - Axiomathes 29 (4):363-382.
    Model organisms are a living form of scientific models. Despite the widespread use of model organisms in scientific research, the actual representational relationship between model organisms and their target species is often poorly characterized in the context of cross-species research. Many model organisms do not represent the target species adequately, let alone accurately. This is partly due to the complex and emergent life phenomena in the organism, and partly due to the fact that a model organism is always taken to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational Construction of the Reality: Abstraction and Exploration-Driven Strategies in Constructing Protein–Protein Interfaces.Sim-Hui Tee - 2019 - Axiomathes 29 (3):311-328.
    Computational modeling is one of the primary approaches to constructing protein–protein interfaces in the laboratory. The algorithm-driven computational protein design has been successfully applied to the construction of functional proteins with improved binding affinity and increased thermostability. It is intriguing how a computational protein modeling approach can construct and shape the reality of new functional proteins from scratch. I articulate an account of abstraction and exploration-driven strategies in this computational endeavor. I aim to show that how a computational modelling approach, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Old and New Problems in Philosophy of Measurement.Eran Tal - 2013 - Philosophy Compass 8 (12):1159-1173.
    The philosophy of measurement studies the conceptual, ontological, epistemic, and technological conditions that make measurement possible and reliable. A new wave of philosophical scholarship has emerged in the last decade that emphasizes the material and historical dimensions of measurement and the relationships between measurement and theoretical modeling. This essay surveys these developments and contrasts them with earlier work on the semantics of quantity terms and the representational character of measurement. The conclusions highlight four characteristics of the emerging research program in (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Making Time: A Study in the Epistemology of Measurement.Eran Tal - 2016 - British Journal for the Philosophy of Science 67 (1):297-335.
    This article develops a model-based account of the standardization of physical measurement, taking the contemporary standardization of time as its central case study. To standardize the measurement of a quantity, I argue, is to legislate the mode of application of a quantity concept to a collection of exemplary artefacts. Legislation involves an iterative exchange between top-down adjustments to theoretical and statistical models regulating the application of a concept, and bottom-up adjustments to material artefacts in light of remaining gaps. The model-based (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Cognitive Science and Thought Experiments: A Refutation of Paul Thagard's Skepticism.Michael T. Stuart - 2014 - Perspectives on Science 22 (2):264-287.
    Paul Thagard has recently argued that thought experiments are dangerous and misleading when we try to use them as evidence for claims. This paper refutes his skepticism. Building on Thagard’s own work in cognitive science, I suggest that Thagard has much that is positive to say about how thought experiments work. My last section presents some new directions for research on the intersection between thought experiments and cognitive science.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Why Computer Simulation Cannot Be an End of Thought Experimentation.N. K. Shinod - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (3):431-453.
    Computer simulation and thought experiments seem to produce knowledge about the world without intervening in the world. This has called for a comparison between the two methods. However, Chandrasekharan et al. argue that the nature of contemporary science is too complex for using TEs. They suggest CS as the tool for contemporary sciences and conclude that it will replace TEs. In this paper, by discussing a few TEs from the history of science, I show that the replacement thesis about TE (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Computer Simulation? A Review of a Passionate Debate.Nicole J. Saam - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):293-309.
    Where should computer simulations be located on the ‘usual methodological map’ which distinguishes experiment from theory? Specifically, do simulations ultimately qualify as experiments or as thought experiments? Ever since Galison raised that question, a passionate debate has developed, pushing many issues to the forefront of discussions concerning the epistemology and methodology of computer simulation. This review article illuminates the positions in that debate, evaluates the discourse and gives an outlook on questions that have not yet been addressed.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The epistemic superiority of experiment to simulation.Sherrilyn Roush - 2018 - Synthese 195 (11):4883-4906.
    This paper defends the naïve thesis that the method of experiment has per se an epistemic superiority over the method of computer simulation, a view that has been rejected by some philosophers writing about simulation, and whose grounds have been hard to pin down by its defenders. I further argue that this superiority does not come from the experiment’s object being materially similar to the target in the world that the investigator is trying to learn about, as both sides of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The epistemic superiority of experiment to simulation.Sherrilyn Roush - 2018 - Synthese 195 (11):4883-4906.
    This paper defends the naïve thesis that the method of experiment has per se an epistemic superiority over the method of computer simulation, a view that has been rejected by some philosophers writing about simulation, and whose grounds have been hard to pin down by its defenders. I further argue that this superiority does not come from the experiment’s object being materially similar to the target in the world that the investigator is trying to learn about, as both sides of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Real moral problems in the use of virtual reality.Erick Jose Ramirez & Scott LaBarge - 2018 - Ethics and Information Technology (4):249-263.
    In this paper, we argue that, under a specific set of circumstances, designing and employing certain kinds of virtual reality (VR) experiences can be unethical. After a general discussion of simulations and their ethical context, we begin our argu-ment by distinguishing between the experiences generated by different media (text, film, computer game simulation, and VR simulation), and argue that VR experiences offer an unprecedented degree of what we call “perspectival fidelity” that prior modes of simulation lack. Additionally, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Computer Modeling and Simulation: Increasing Reliability by Disentangling Verification and Validation.Vitaly Pronskikh - 2019 - Minds and Machines 29 (1):169-186.
    Verification and validation of computer codes and models used in simulations are two aspects of the scientific practice of high importance that recently have been discussed widely by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to the model’s relation to the real world and its intended use. Because complex simulations are generally opaque to a practitioner, the Duhem problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Minimalist Epistemology for Agent-Based Simulations in the Artificial Sciences.Giuseppe Primiero - 2019 - Minds and Machines 29 (1):127-148.
    The epistemology of computer simulations has become a mainstream topic in the philosophy of technology. Within this large area, significant differences hold between the various types of models and simulation technologies. Agent-based and multi-agent systems simulations introduce a specific constraint on the types of agents and systems modelled. We argue that such difference is crucial and that simulation for the artificial sciences requires the formulation of its own specific epistemological principles. We present a minimally committed epistemology which relies on the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • New Issues for New Methods: Ethical and Editorial Challenges for an Experimental Philosophy.Andrea Polonioli - 2017 - Science and Engineering Ethics 23 (4):1009-1034.
    This paper examines a constellation of ethical and editorial issues that have arisen since philosophers started to conduct, submit and publish empirical research. These issues encompass concerns over responsible authorship, fair treatment of human subjects, ethicality of experimental procedures, availability of data, unselective reporting and publishability of research findings. This study aims to assess whether the philosophical community has as yet successfully addressed such issues. To do so, the instructions for authors, submission process and published research papers of 29 main (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Experiments, Simulations, and Epistemic Privilege.Emily C. Parke - 2014 - Philosophy of Science 81 (4):516-536.
    Experiments are commonly thought to have epistemic privilege over simulations. Two ideas underpin this belief: first, experiments generate greater inferential power than simulations, and second, simulations cannot surprise us the way experiments can. In this article I argue that neither of these claims is true of experiments versus simulations in general. We should give up the common practice of resting in-principle judgments about the epistemic value of cases of scientific inquiry on whether we classify those cases as experiments or simulations, (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Evidence and Knowledge from Computer Simulation.Wendy S. Parker - 2020 - Erkenntnis 87 (4):1521-1538.
    Can computer simulation results be evidence for hypotheses about real-world systems and phenomena? If so, what sort of evidence? Can we gain genuinely new knowledge of the world via simulation? I argue that evidence from computer simulation is aptly characterized as higher-order evidence: it is evidence that other evidence regarding a hypothesis about the world has been collected. Insofar as particular epistemic agents do not have this other evidence, it is possible that they will gain genuinely new knowledge of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computer Simulation, Measurement, and Data Assimilation.Wendy S. Parker - 2017 - British Journal for the Philosophy of Science 68 (1):273-304.
    This article explores some of the roles of computer simulation in measurement. A model-based view of measurement is adopted and three types of measurement—direct, derived, and complex—are distinguished. It is argued that while computer simulations on their own are not measurement processes, in principle they can be embedded in direct, derived, and complex measurement practices in such a way that simulation results constitute measurement outcomes. Atmospheric data assimilation is then considered as a case study. This practice, which involves combining information (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • An Instrument for What? Digital Computers, Simulation and Scientific Practice.Wendy S. Parker - 2010 - Spontaneous Generations 4 (1):39-44.
    As a device used by scientists in the course of performing research, the digital computer might be considered a scientific instrument. But if so, what is it an instrument for? This paper explores a number of answers to this question, focusing on the use of computers in a simulating mode.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The predictive reframing of machine learning applications: good predictions and bad measurements.Alexander Martin Mussgnug - 2022 - European Journal for Philosophy of Science 12 (3):1-21.
    Supervised machine learning has found its way into ever more areas of scientific inquiry, where the outcomes of supervised machine learning applications are almost universally classified as predictions. I argue that what researchers often present as a mere terminological particularity of the field involves the consequential transformation of tasks as diverse as classification, measurement, or image segmentation into prediction problems. Focusing on the case of machine-learning enabled poverty prediction, I explore how reframing a measurement problem as a prediction task alters (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computer simulations and experiments: The case of the Higgs boson.Michela Massimi & Wahid Bhimji - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51 (C):71-81.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Coupling simulation and experiment: The bimodal strategy in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):572-584.
    The importation of computational methods into biology is generating novel methodological strategies for managing complexity which philosophers are only just starting to explore and elaborate. This paper aims to enrich our understanding of methodology in integrative systems biology, which is developing novel epistemic and cognitive strategies for managing complex problem-solving tasks. We illustrate this through developing a case study of a bimodal researcher from our ethnographic investigation of two systems biology research labs. The researcher constructed models of metabolic and cell-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining whether, and under (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why experiments matter.Arnon Levy & Adrian Currie - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (9-10):1066-1090.
    ABSTRACTExperimentation is traditionally considered a privileged means of confirmation. However, why and how experiments form a better confirmatory source relative to other strategies is unclear, and recent discussions have identified experiments with various modeling strategies on the one hand, and with ‘natural’ experiments on the other hand. We argue that experiments aiming to test theories are best understood as controlled investigations of specimens. ‘Control’ involves repeated, fine-grained causal manipulation of focal properties. This capacity generates rich knowledge of the object investigated. (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What distinguishes data from models?Sabina Leonelli - 2019 - European Journal for Philosophy of Science 9 (2):22.
    I propose a framework that explicates and distinguishes the epistemic roles of data and models within empirical inquiry through consideration of their use in scientific practice. After arguing that Suppes’ characterization of data models falls short in this respect, I discuss a case of data processing within exploratory research in plant phenotyping and use it to highlight the difference between practices aimed to make data usable as evidence and practices aimed to use data to represent a specific phenomenon. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What distinguishes data from models?Sabina Leonelli - 2019 - European Journal for Philosophy of Science 9 (2):22.
    I propose a framework that explicates and distinguishes the epistemic roles of data and models within empirical inquiry through consideration of their use in scientific practice. After arguing that Suppes’ characterization of data models falls short in this respect, I discuss a case of data processing within exploratory research in plant phenotyping and use it to highlight the difference between practices aimed to make data usable as evidence and practices aimed to use data to represent a specific phenomenon. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Deidealization: No Easy Reversals.Tarja Knuuttila & Mary S. Morgan - 2019 - Philosophy of Science 86 (4):641-661.
    Deidealization as a topic in its own right has attracted remarkably little philosophical interest despite the extensive literature on idealization. One reason for this is the often implicit assumption that idealization and deidealization are, potentially at least, reversible processes. We question this assumption by analyzing the challenges of deidealization within a menu of four broad categories: deidealizing as recomposing, deidealizing as reformulating, deidealizing as concretizing, and deidealizing as situating. On closer inspection, models turn out much more inflexible than the reversal (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the various kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thought Experiments and The Pragmatic Nature of Explanation.Panagiotis Karadimas - forthcoming - Foundations of Science:1-24.
    Different why-questions emerge under different contexts and require different information in order to be addressed. Hence a relevance relation can hardly be invariant across contexts. However, what is indeed common under any possible context is that all explananda require scientific information in order to be explained. So no scientific information is in principle explanatorily irrelevant, it only becomes so under certain contexts. In view of this, scientific thought experiments can offer explanations, should we analyze their representational strategies. Their representations involve (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computer Simulation, Experiment, and Novelty.Julie Jebeile - 2017 - International Studies in the Philosophy of Science 31 (4):379-395.
    It is often said that computer simulations generate new knowledge about the empirical world in the same way experiments do. My aim is to make sense of such a claim. I first show that the similarities between computer simulations and experiments do not allow them to generate new knowledge but invite the simulationist to interact with simulations in an experimental manner. I contend that, nevertheless, computer simulations and experiments yield new knowledge under the same epistemic circumstances, independently of any features (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Les simulations sont-elles des expériences numériques?Julie Jebeile - 2016 - Dialogue 55 (1):59-86.
    Some philosophers see an analogy between simulation and experiment. But, once we acknowledge some similarities between computer simulations and experiments, can we conclude from them that simulations generate empirical knowledge, as experiments do? In this paper, I argue that the similarities between simulation and experiment give the scientist at most the illusion that she is conducting an experiment, but cannot seriously ground the analogy. However, it does not follow that experiments are always epistemologically superior to simulations. I analyze the cases (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemic Loops and Measurement Realism.Alistair M. C. Isaac - 2019 - Philosophy of Science 86 (5):930-941.
    Recent philosophy of measurement has emphasized the existence of both diachronic and synchronic “loops,” or feedback processes, in the epistemic achievements of measurement. A widespread response has been to conclude that measurement outcomes do not convey interest-independent facts about the world, and that only a coherentist epistemology of measurement is viable. In contrast, I argue that a form of measurement realism is consistent with these results. The insight is that antecedent structure in measuring spaces constrains our empirical procedures such that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mapping an expanding territory: computer simulations in evolutionary biology.Philippe Huneman - 2014 - History and Philosophy of the Life Sciences 36 (1):60-89.
    The pervasive use of computer simulations in the sciences brings novel epistemological issues discussed in the philosophy of science literature since about a decade. Evolutionary biology strongly relies on such simulations, and in relation to it there exists a research program (Artificial Life) that mainly studies simulations themselves. This paper addresses the specificity of computer simulations in evolutionary biology, in the context (described in Sect. 1) of a set of questions about their scope as explanations, the nature of validation processes (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Software engineering standards for epidemiological models.Jack K. Horner & John F. Symons - 2020 - History and Philosophy of the Life Sciences 42 (4):1-24.
    There are many tangled normative and technical questions involved in evaluating the quality of software used in epidemiological simulations. In this paper we answer some of these questions and offer practical guidance to practitioners, funders, scientific journals, and consumers of epidemiological research. The heart of our paper is a case study of the Imperial College London covid-19 simulator, set in the context of recent work in epistemology of simulation and philosophy of epidemiology.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Climate Simulations: Uncertain Projections for an Uncertain World.Rafaela Hillerbrand - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (1):17-32.
    Between the fourth and the recent fifth IPCC report, science as well as policy making have made great advances in dealing with uncertainties in global climate models. However, the uncertainties public decision making has to deal with go well beyond what is currently addressed by policy makers and climatologists alike. It is shown in this paper that within an anthropocentric framework, a whole hierarchy of models from various scientific disciplines is needed for political decisions as regards climate change. Via what (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the epistemological analysis of modeling and computational error in the mathematical sciences.Nicolas Fillion & Robert M. Corless - 2014 - Synthese 191 (7):1451-1467.
    Interest in the computational aspects of modeling has been steadily growing in philosophy of science. This paper aims to advance the discussion by articulating the way in which modeling and computational errors are related and by explaining the significance of error management strategies for the rational reconstruction of scientific practice. To this end, we first characterize the role and nature of modeling error in relation to a recipe for model construction known as Euler’s recipe. We then describe a general model (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Concepts of Solution and the Finite Element Method: a Philosophical Take on Variational Crimes.Nicolas Fillion & Robert M. Corless - 2019 - Philosophy and Technology 34 (1):129-148.
    Despite being one of the most dependable methods used by applied mathematicians and engineers in handling complex systems, the finite element method commits variational crimes. This paper contextualizes the concept of variational crime within a broader account of mathematical practice by explaining the tradeoff between complexity and accuracy involved in the construction of numerical methods. We articulate two standards of accuracy used to determine whether inexact solutions are good enough and show that, despite violating the justificatory principles of one, the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Models, Unification, and Simulations: Margaret C. Morrison (1954–2021).Brigitte Falkenburg & Stephan Hartmann - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (1):25-33.
    The philosophy of science community mourns the loss of Margaret Catherine Morrison, who passed away on January 9, 2021, after a long battle with cancer. Margie, as she was known to all who knew her, was highly regarded for her influential contributions to the philosophy of science, particularly her studies of the role of models and simulations in the natural and social sciences. These contributions made her a world-leading philosopher of science, instrumental in shifting philosophers' attention from the structure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Varying the Explanatory Span: Scientific Explanation for Computer Simulations.Juan Manuel Durán - 2017 - International Studies in the Philosophy of Science 31 (1):27-45.
    This article aims to develop a new account of scientific explanation for computer simulations. To this end, two questions are answered: what is the explanatory relation for computer simulations? And what kind of epistemic gain should be expected? For several reasons tailored to the benefits and needs of computer simulations, these questions are better answered within the unificationist model of scientific explanation. Unlike previous efforts in the literature, I submit that the explanatory relation is between the simulation model and the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations