Switch to: Citations

Add references

You must login to add references.
  1. Infinite time Turing machines.Joel David Hamkins & Andy Lewis - 2000 - Journal of Symbolic Logic 65 (2):567-604.
    We extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and decidability on the reals. Everyset. for example, is decidable by such machines, and the semi-decidable sets form a portion of thesets. Our oracle concept leads to a notion of relative computability for sets of reals and a rich degree structure, stratified by two natural jump operators.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Systems of logic based on ordinals..Alan Turing - 1939 - London,: Printed by C.F. Hodgson & son.
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • Neural and super-Turing computing.Hava T. Siegelmann - 2003 - Minds and Machines 13 (1):103-114.
    ``Neural computing'' is a research field based on perceiving the human brain as an information system. This system reads its input continuously via the different senses, encodes data into various biophysical variables such as membrane potentials or neural firing rates, stores information using different kinds of memories (e.g., short-term memory, long-term memory, associative memory), performs some operations called ``computation'', and outputs onto various channels, including motor control commands, decisions, thoughts, and feelings. We show a natural model of neural computing that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Trial and error predicates and the solution to a problem of Mostowski.Hilary Putnam - 1965 - Journal of Symbolic Logic 30 (1):49-57.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Limiting recursion.E. Mark Gold - 1965 - Journal of Symbolic Logic 30 (1):28-48.
    A class of problems is called decidable if there is an algorithm which will give the answer to any problem of the class after a finite length of time. The purpose of this paper is to discuss the classes of problems that can be solved by infinitely long decision procedures in the following sense: An algorithm is given which, for any problem of the class, generates an infinitely long sequence of guesses. The problem will be said to be solved in (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Beyond the universal Turing machine.Jack Copeland - 1999 - Australasian Journal of Philosophy 77 (1):46-67.
    We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of well-defined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • An Unsolvable Problem of Elementary Number Theory.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):73-74.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • The Myth of Hypercomputation.Martin Davis - 2004 - In Christof Teuscher (ed.), Alan Turing: Life and Legacy of a Great Thinker. Springer-Verlag. pp. 196-211.
    Under the banner of "hypercomputat ion" various claims are being made for the feasibility of modes of computation that go beyond what is permitted by Turing computability. In this article it will be shown that such claims fly in the face of the inability of all currently accepted physical theories to deal with infinite precision real numbers. When the claims are viewed critically, it is seen that they amount to little more than the obvious comment that if non-computable inputs are (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Using biased coins as oracles.Toby Ord & Tien D. Kieu - 2009 - International Journal of Unconventional Computing 5:253-265.
    While it is well known that a Turing machine equipped with the ability to flip a fair coin cannot compute more than a standard Turing machine, we show that this is not true for a biased coin. Indeed, any oracle set X may be coded as a probability pX such that if a Turing machine is given a coin which lands heads with probability pX it can compute any function recursive in X with arbitrarily high probability. We also show how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The broad conception of computation.Jack Copeland - 1997 - American Behavioral Scientist 40 (6):690-716.
    A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine - a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, sometimes incorrectly termed the 'Church-Turing thesis', is the claim that the class of functions that can be computed by machines is identical to the class of functions that can be computed by (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Infinite pains: the trouble with supertasks.John Earman & John Norton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 11--271.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The Limits of Empiricism.Bertrand Russell - 1936 - Proceedings of the Aristotelian Society 36:131--50.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Hypercomputation: Computing more than the Turing machine.Toby Ord - 2002 - Dissertation, University of Melbourne
    In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which allows comparisons of the many approaches and results. To this I add several new results and draw out some interesting consequences of hypercomputation for several different disciplines.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Non-Turing Computers and Non-Turing Computability.Mark Hogarth - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:126-138.
    A true Turing machine requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime, but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar to our world. But curiously enough-and this is (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations