- A binary Routley semantics for intuitionistic De Morgan minimal logic HM and its extensions.G. Robles & J. M. Mendez - 2015 - Logic Journal of the IGPL 23 (2):174-193.details
|
|
Revisiting da Costa logic.Mauricio Osorio Galindo, Verónica Borja Macías & José Ramón Enrique Arrazola Ramírez - 2016 - Journal of Applied Logic 16:111-127.details
|
|
Dualising Intuitionictic Negation.Graham Priest - 2009 - Principia: An International Journal of Epistemology 13 (2):165-184.details
|
|
Weakening and Extending {mathbb{Z}}.Mauricio Osorio, J. L. Carballido, C. Zepeda & J. A. Castellanos - 2015 - Logica Universalis 9 (3):383-409.details
|
|
Extensions of Priest-da Costa Logic.Thomas Macaulay Ferguson - 2014 - Studia Logica 102 (1):145-174.details
|
|
The semantics of entailment — III.Richard Routley & Robert K. Meyer - 1972 - Journal of Philosophical Logic 1 (2):192 - 208.details
|
|
On the theory of inconsistent formal systems.Newton C. A. da Costa - 1974 - Notre Dame Journal of Formal Logic 15 (4):497-510.details
|
|
More on Empirical Negation.Michael De & Hitoshi Omori - 2014 - In Rajeev Goré, Barteld Kooi & Agi Kurucz (eds.), Advances in Modal Logic, Volume 10: Papers From the Tenth Aiml Conference, Held in Groningen, the Netherlands, August 2014. London, England: CSLI Publications. pp. 114-133.details
|
|
Variations on da Costa C systems and dual-intuitionistic logics I. analyses of cω and CCω.Richard Sylvan - 1990 - Studia Logica 49 (1):47-65.details
|
|
Revisiting $\mathbb{Z}$.Mauricio Osorio, José Luis Carballido & Claudia Zepeda - 2014 - Notre Dame Journal of Formal Logic 55 (1):129-155.details
|
|
Variations on Da Costa C Systems and Dual-Intuitionistic Logics I. Analyses of $C{\omega}$ and $CC{\omega}$.Richard Sylvan - 1990 - Studia Logica 49 (1):47 - 65.details
|
|