Switch to: Citations

Add references

You must login to add references.
  1. On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   723 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Mathematics and Scientific Representation.Christopher Pincock - 2011 - Oxford and New York: Oxford University Press USA.
    Mathematics plays a central role in much of contemporary science, but philosophers have struggled to understand what this role is or how significant it might be for mathematics and science. In this book Christopher Pincock tackles this perennial question in a new way by asking how mathematics contributes to the success of our best scientific representations. In the first part of the book this question is posed and sharpened using a proposal for how we can determine the content of a (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • An Unsolvable Problem of Elementary Number Theory.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):73-74.
    Download  
     
    Export citation  
     
    Bookmark   177 citations  
  • Indispensability and Practice.Penelope Maddy - 1992 - Journal of Philosophy 89 (6):275.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • How to avoid inconsistent idealizations.Christopher Pincock - 2014 - Synthese 191 (13):2957-2972.
    Idealized scientific representations result from employing claims that we take to be false. It is not surprising, then, that idealizations are a prime example of allegedly inconsistent scientific representations. I argue that the claim that an idealization requires inconsistent beliefs is often incorrect and that it turns out that a more mathematical perspective allows us to understand how the idealization can be interpreted consistently. The main example discussed is the claim that models of ocean waves typically involve the false assumption (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner DePauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics. Dordrecht, Boston and London: Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How to Make a Meaningful Comparison of Models: The Church–Turing Thesis Over the Reals.Maël Pégny - 2016 - Minds and Machines 26 (4):359-388.
    It is commonly believed that there is no equivalent of the Church–Turing thesis for computation over the reals. In particular, computational models on this domain do not exhibit the convergence of formalisms that supports this thesis in the case of integer computation. In the light of recent philosophical developments on the different meanings of the Church–Turing thesis, and recent technical results on analog computation, I will show that this current belief confounds two distinct issues, namely the extension of the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relations Between Experimental Physics and Mathematical Physics.Henri Poincaré - 1902 - The Monist 12 (4):516-543.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computability and analysis: the legacy of Alan Turing.Jeremy Avigad & Vasco Brattka - unknown
    We discuss the legacy of Alan Turing and his impact on computability and analysis.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constructivism, Computability, and Physical Theories.Wayne C. Myrvold - 1994 - Dissertation, Boston University
    This dissertation is an investigation into the degree to which the mathematics used in physical theories can be constructivized. The techniques of recursive function theory and classical logic are used to separate out the algorithmic content of mathematical theories rather than attempting to reformulate them in terms of "intuitionistic" logic. The guiding question is: are there experimentally testable predictions in physics which are not computable from the data? ;The nature of Church's thesis, that the class of effectively calculable functions on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable Functionals.A. Grzegorczyk - 1959 - Journal of Symbolic Logic 24 (1):50-51.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Computable Analysis.Oliver Aberth - 1984 - Journal of Symbolic Logic 49 (3):988-989.
    Download  
     
    Export citation  
     
    Bookmark   15 citations