Switch to: Citations

Add references

You must login to add references.
  1. Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
    Download  
     
    Export citation  
     
    Bookmark   599 citations  
  • Logic of proofs.Sergei Artëmov - 1994 - Annals of Pure and Applied Logic 67 (1-3):29-59.
    In this paper individual proofs are integrated into provability logic. Systems of axioms for a logic with operators “A is provable” and “p is a proof of A” are introduced, provided with Kripke semantics and decision procedure. Completeness theorems with respect to the arithmetical interpretation are proved.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • On formulas of one variable in intuitionistic propositional calculus.Iwao Nishimura - 1960 - Journal of Symbolic Logic 25 (4):327-331.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)On the interpretation of intuitionistic number theory.S. C. Kleene - 1945 - Journal of Symbolic Logic 10 (4):109-124.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Propositional Logics of Closed and Open Substitutions over Heyting's Arithmetic.Albert Visser - 2006 - Notre Dame Journal of Formal Logic 47 (3):299-309.
    In this note we compare propositional logics for closed substitutions and propositional logics for open substitutions in constructive arithmetical theories. We provide a strong example where these logics diverge in an essential way. We prove that for Markov's Arithmetic, that is, Heyting's Arithmetic plus Markov's principle plus Extended Church's Thesis, the logic of closed and the logic of open substitutions are the same.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Arithmetic complexity of the predicate logics of certain complete arithmetic theories.Valery Plisko - 2001 - Annals of Pure and Applied Logic 113 (1-3):243-259.
    It is proved in this paper that the predicate logic of each complete constructive arithmetic theory T having the existential property is Π1T-complete. In this connection, the techniques of a uniform partial truth definition for intuitionistic arithmetic theories is used. The main theorem is applied to the characterization of the predicate logic corresponding to certain variant of the notion of realizable predicate formula. Namely, it is shown that the set of irrefutable predicate formulas is recursively isomorphic to the complement of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)From Frege to Gödel. A Source Book in Mathematical Logic 1879-1931.Jean van Heijenoort - 1968 - Synthese 18 (2-3):302-305.
    Download  
     
    Export citation  
     
    Bookmark   78 citations