Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • History of logic in Latin America: the case of Ayda Ignez Arruda.Gisele Dalva Secco & Miguel Alvarez Lisboa - 2022 - British Journal for the History of Philosophy 30 (2):384-408.
    Ayda Ignez Arruda was a key figure in the development of the Brazilian school of Paraconsistent logic and the first person to write a historical survey of the field. Despite her importa...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formalism and Hilbert’s understanding of consistency problems.Michael Detlefsen - 2021 - Archive for Mathematical Logic 60 (5):529-546.
    Formalism in the philosophy of mathematics has taken a variety of forms and has been advocated for widely divergent reasons. In Sects. 1 and 2, I briefly introduce the major formalist doctrines of the late nineteenth and early twentieth centuries. These are what I call empirico-semantic formalism, game formalism and instrumental formalism. After describing these views, I note some basic points of similarity and difference between them. In the remainder of the paper, I turn my attention to Hilbert’s instrumental formalism. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lorenzen's Proof of Consistency for Elementary Number Theory.Thierry Coquand & Stefan Neuwirth - 2020 - History and Philosophy of Logic 41 (3):281-290.
    We present a manuscript of Paul Lorenzen that provides a proof of consistency for elementary number theory as an application of the construction of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universität Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also compare this proof to Gentzen's and Novikov's, and provide a translation of the manuscript.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Does Choice Really Imply Excluded Middle? Part II: Historical, Philosophical, and Foundational Reflections on the Goodman–Myhill Result†.Neil Tennant - 2021 - Philosophia Mathematica 29 (1):28-63.
    Our regimentation of Goodman and Myhill’s proof of Excluded Middle revealed among its premises a form of Choice and an instance of Separation.Here we revisit Zermelo’s requirement that the separating property be definite. The instance that Goodman and Myhill used is not constructively warranted. It is that principle, and not Choice alone, that precipitates Excluded Middle.Separation in various axiomatizations of constructive set theory is examined. We conclude that insufficient critical attention has been paid to how those forms of Separation fail, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice function. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Two Notions of Computation in Transparent Intensional Logic.Ivo Pezlar - 2018 - Axiomathes 29 (2):189-205.
    In Transparent Intensional Logic we can recognize two distinct notions of computation that loosely correspond to term rewriting and term interpretation as known from lambda calculus. Our goal will be to further explore these two notions and examine some of their properties.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frank Ramsey and the Realistic Spirit.Steven Methven - 2014 - London and Basingstoke: Palgrave Macmillan.
    This book attempts to explicate and expand upon Frank Ramsey's notion of the realistic spirit. In so doing, it provides a systematic reading of his work, and demonstrates the extent of Ramsey's genius as evinced by both his responses to the Tractatus Logico-Philosophicus , and the impact he had on Wittgenstein's later philosophical insights.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Blanchette on Frege on Analysis and Content.Marcus Rossberg - 2015 - Journal for the History of Analytical Philosophy 3 (7).
    All contributions included in the present issue were originally presented at an ‘Author Meets Critics’ session organised by Richard Zach at the Pacific Meeting of the American Philosophical Association in San Diego in the Spring of 2014.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Husserl and the Algebra of Logic: Husserl’s 1896 Lectures.Mirja Hartimo - 2012 - Axiomathes 22 (1):121-133.
    In his 1896 lecture course on logic–reportedly a blueprint for the Prolegomena to Pure Logic –Husserl develops an explicit account of logic as an independent and purely theoretical discipline. According to Husserl, such a theory is needed for the foundations of logic (in a more general sense) to avoid psychologism in logic. The present paper shows that Husserl’s conception of logic (in a strict sense) belongs to the algebra of logic tradition. Husserl’s conception is modeled after arithmetic, and respectively logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert's epistemology.Philip Kitcher - 1976 - Philosophy of Science 43 (1):99-115.
    Hilbert's program attempts to show that our mathematical knowledge can be certain because we are able to know for certain the truths of elementary arithmetic. I argue that, in the absence of a theory of mathematical truth, Hilbert does not have a complete theory of our arithmetical knowledge. Further, while his deployment of a Kantian notion of intuition seems to promise an answer to scepticism, there is no way to complete Hilbert's epistemology which would answer to his avowed aims.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Reading ‘On Denoting’ on its Centenary.David Kaplan - 2005 - Mind 114 (456):933-1003.
    Part 1 sets out the logical/semantical background to ‘On Denoting’, including an exposition of Russell's views in Principles of Mathematics, the role and justification of Frege's notorious Axiom V, and speculation about how the search for a solution to the Contradiction might have motivated a new treatment of denoting. Part 2 consists primarily of an extended analysis of Russell's views on knowledge by acquaintance and knowledge by description, in which I try to show that the discomfiture between Russell's semantical and (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The mathematical import of zermelo's well-ordering theorem.Akihiro Kanamori - 1997 - Bulletin of Symbolic Logic 3 (3):281-311.
    Set theory, it has been contended, developed from its beginnings through a progression ofmathematicalmoves, despite being intertwined with pronounced metaphysical attitudes and exaggerated foundational claims that have been held on its behalf. In this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Alternating (In)Dependence-Friendly Logic.Dylan Bellier, Massimo Benerecetti, Dario Della Monica & Fabio Mogavero - 2023 - Annals of Pure and Applied Logic 174 (10):103315.
    Download  
     
    Export citation  
     
    Bookmark  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Gödel's awareness of Skolem's Helsinki lecture.Mark van Atten - 2005 - History and Philosophy of Logic 26 (4):321-326.
    Gödel always claimed that he did not know Skolem's Helsinki lecture when writing his dissertation. Some questions and doubts have been raised about this claim, in particular on the basis of a library slip showing that he had requested Skolem's paper in 1928. It is shown that this library slip does not constitute evidence against Gödel's claim, and that, on the contrary, the library slip and other archive material actually corroborate what Gödel said.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The truth and nothing but the truth, yet never the whole truth: Frege, Russell and the analysis of unities.Graham Stevens - 2003 - History and Philosophy of Logic 24 (3):221-240.
    It is widely assumed that Russell's problems with the unity of the proposition were recurring and insoluble within the framework of the logical theory of his Principles of Mathematics. By contrast, Frege's functional analysis of thoughts (grounded in a type-theoretic distinction between concepts and objects) is commonly assumed to provide a solution to the problem or, at least, a means of avoiding the difficulty altogether. The Fregean solution is unavailable to Russell because of his commitment to the thesis that there (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Formalizations après la lettre: Studies in Medieval Logic and Semantics.Catarina Dutilh Novaes - 2006 - Dissertation, Leiden University
    This thesis is on the history and philosophy of logic and semantics. Logic can be described as the ‘science of reasoning’, as it deals primarily with correct patterns of reasoning. However, logic as a discipline has undergone dramatic changes in the last two centuries: while for ancient and medieval philosophers it belonged essentially to the realm of language studies, it has currently become a sub-branch of mathematics. This thesis attempts to establish a dialogue between the modern and the medieval traditions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic in the twenties: The nature of the quantifier.Warren D. Goldfarb - 1979 - Journal of Symbolic Logic 44 (3):351-368.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Intuition, Iteration, Induction.Mark van Atten - 2024 - Philosophia Mathematica 32 (1):34-81.
    Brouwer’s view on induction has relatively recently been characterised as one on which it is not only intuitive (as expected) but functional, by van Dalen. He claims that Brouwer’s ‘Ur-intuition’ also yields the recursor. Appealing to Husserl’s phenomenology, I offer an analysis of Brouwer’s view that supports this characterisation and claim, even if assigning the primary role to the iterator instead. Contrasts are drawn to accounts of induction by Poincaré, Heyting, and Kreisel. On the phenomenological side, the analysis provides an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • La constitución del programa de Hilbert.Max Fernández de Castro & Yolanda Torres Falcón - 2020 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 10 (2):31--50.
    In the pages that follow, it is our intention to present a panoramic and schematic view of the evolution of the formalist program, which derives from recent studies of lecture notes that were unknown until very recently. Firstly, we analyze certain elements of the program. Secondly, we observe how, once the program was established in 1920, in the period up to 1931, different types of finitism with a common basis were tried out by Hilbert and Bernays, in an effort to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Descriptivism about the Reference of Set-Theoretic Expressions: Revisiting Putnam’s Model-Theoretic Arguments.Zeynep Soysal - 2020 - The Monist 103 (4):442-454.
    Putnam’s model-theoretic arguments for the indeterminacy of reference have been taken to pose a special problem for mathematical languages. In this paper, I argue that if one accepts that there are theory-external constraints on the reference of at least some expressions of ordinary language, then Putnam’s model-theoretic arguments for mathematical languages don’t go through. In particular, I argue for a kind of descriptivism about mathematical expressions according to which their reference is “anchored” in the reference of expressions of ordinary language. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbertian Structuralism and the Frege-Hilbert Controversy†.Fiona T. Doherty - 2019 - Philosophia Mathematica 27 (3):335-361.
    ABSTRACT This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Formalizing Medieval Logical Theories: Suppositio, Consequentiae and Obligationes.Catarina Dutilh Novaes - 2007 - Dordrecht, Netherland: Springer.
    This book presents novel formalizations of three of the most important medieval logical theories: supposition, consequence and obligations. In an additional fourth part, an in-depth analysis of the concept of formalization is presented - a crucial concept in the current logical panorama, which as such receives surprisingly little attention.Although formalizations of medieval logical theories have been proposed earlier in the literature, the formalizations presented here are all based on innovative vantage points: supposition theories as algorithmic hermeneutics, theories of consequence analyzed (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The disunity of truth.Josh Dever - 2008 - In Robert Stainton & Christopher Viger (eds.), Compositionality, Context, and Semantic Values: Essays in Honor of Ernie Lepore. Springer. pp. 174-191.
    §§3-4 of the Begriffsschrift present Frege’s objections to a dominant if murky nineteenth-century semantic picture. I sketch a minimalist variant of the pre-Fregean picture which escapes Frege’s criticisms by positing a thin notion of semantic content which then interacts with a multiplicity of kinds of truth to account for phenomena such as modality. After exploring several ways in which we can understand the existence of multiple truth properties, I discuss the roles of pointwise and setwise truth properties in modal logic. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Partial realizations of Hilbert's program.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (2):349-363.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Analysis versus laws boole’s explanatory psychologism versus his explanatory anti-psychologism.Nicla Vassallo - 1997 - History and Philosophy of Logic 18 (3):151-163.
    This paper discusses George Boole’s two distinct approaches to the explanatory relationship between logical and psychological theory. It is argued that, whereas in his first book he attributes a substantive role to psychology in the foundation of logical theory, in his second work he abandons that position in favour of a linguistically conceived foundation. The early Boole espoused a type of psychologism and later came to adopt a type of anti-psychologism. To appreciate this invites a far-reaching reassessment of his philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Why Mathematics Can Not be Ontology.Shiva Rahman - 2019 - Axiomathes 29 (3):289-296.
    The formalism of mathematics has always inspired ontological theorization based on it. As is evident from his magnum opus Being and Event, Alain Badiou remains one of the most important contemporary contributors to this enterprise. His famous maxim—“mathematics is ontology” has its basis in the ingenuity that he has shown in capitalizing on Gödel’s and Cohen’s work in the field of set theory. Their work jointly establish the independence of the continuum hypothesis from the standard axioms of Zermelo–Fraenkel set theory, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two dogmas of computationalism.Oron Shagrir - 1997 - Minds and Machines 7 (3):321-44.
    This paper challenges two orthodox theses: (a) that computational processes must be algorithmic; and (b) that all computed functions must be Turing-computable. Section 2 advances the claim that the works in computability theory, including Turing's analysis of the effective computable functions, do not substantiate the two theses. It is then shown (Section 3) that we can describe a system that computes a number-theoretic function which is not Turing-computable. The argument against the first thesis proceeds in two stages. It is first (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Editorial Introduction.Erich H. Reck - 2024 - History and Philosophy of Logic 45 (4):389-393.
    In many accounts of the history of logic, especially from the second half of the twentieth century and partly still today, Frege’s first book, Begriffsschrift (1879), is singled out as the beginnin...
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Arguments for the Continuity Principle.Mark van Atten & Dirk Van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329 - 347.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)How Connected is the Intuitionistic Continuum?Dirk Van Dalen - 1997 - Journal of Symbolic Logic 62 (4):1147 - 1150.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Unified Grounding.Casper Storm Hansen - 2016 - Erkenntnis 81 (5):993-1010.
    This paper offers a unification and systematization of the grounding approaches to truth, denotation, classes and abstraction. Its main innovation is a method for “kleenifying” bivalent semantics so as to ensure that the trivalent semantics used for various linguistic elements are perfectly analogous to the semantics used by Kripke, rather than relying on intuition to achieve similarity. The focus is on generalizing strong Kleene semantics, but one section is devoted to supervaluation, and the unification method also extends to weak Kleene (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's formalism and arithmetization of mathematics.Judson C. Webb - 1997 - Synthese 110 (1):1-14.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ontology in the Game of Life.Eric Steinhart - 2012 - Axiomathes 22 (3):403-416.
    The game of life is an excellent framework for metaphysical modeling. It can be used to study ontological categories like space, time, causality, persistence, substance, emergence, and supervenience. It is often said that there are many levels of existence in the game of life. Objects like the glider are said to exist on higher levels. Our goal here is to work out a precise formalization of the thesis that there are various levels of existence in the game of life. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reflective inquiry and “The Fate of Reason”.William Boos - 2014 - Synthese 191 (18):4253-4314.
    What particular privilege has this little Agitation of the Brain which we call Thought, that we must make it the Model of the whole Universe? (Hume, Dialogues Concerning Natural Religion, 1976, p. 168)******...at once it struck me, what quality went to form a Man (sic) of Achievement especially in Literature and which Shakespeare possessed so enormously—I mean Negative Capability, that is when someone is capable of being in uncertainties, Mysteries, doubts without any irritable reaching after fact and reason. (Keats 1959, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations